K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 3 2021

\(m^2+n^2+\frac{1}{4}\ge2mn+m-n\)

\(\Leftrightarrow m^2+n^2+\frac{1}{4}-2mn-m+n\ge0\)

\(\Leftrightarrow m^2+n^2+\left(\frac{1}{2}\right)^2-2mn-2.\frac{1}{2}m+2.\frac{1}{2}n\ge0\)

\(\Leftrightarrow\left(n-m+\frac{1}{2}\right)^2\ge0\)

Biểu thức cuối luôn đúng mà ta biến đổi tương đương nên ta có đpcm. 

15 tháng 3 2021

m2 + n2 + 1/4 ≥ 2mn + m - n 

<=> 4m2 + 4n2 + 1 ≥ 8mn + 4m - 4n

<=> 4m2 + 4n2 + 1 - 8mn + 4m - 4n ≥ 0

<=> ( 2m - 2n + 1 )2 ≥ 0 ( đúng )

Vậy ta có đpcm

2 tháng 5 2017

Ta có:

m2+n2+p2+q2+1-mn+mp+mq+m

\(=\left(\dfrac{m^2}{4}-mn+n^2\right)+\left(\dfrac{m^2}{4}-mp+p^2\right)+\left(\dfrac{m^2}{4}-mq+q^2\right)+\left(\dfrac{m^2}{4}-m+1\right)\)

\(=\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\)

\(\left(\dfrac{m}{2}-n\right)^2\ge0;\left(\dfrac{m}{2}-p\right)^2\ge0;\left(\dfrac{m}{2}-q\right)^2\ge0;\left(\dfrac{m}{2}-1\right)^2\ge0\)

=> \(\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\ge0\)

<=> m2+n2+p2+q2+1-mn+mp+mq+m \(\ge0\)

<=> m2+n2+p2+q2+1\(\ge\) mn+mp+mq+m

<=> m2+n2+p2+q2+1\(\ge\) m(n+p+q+1)

Vậy m2+n2+p2+q2+1\(\ge\) m(n+p+q+1) với mọi m, n, p, q

3 tháng 5 2017

Giải:

Ta có:

\(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)

\(\Leftrightarrow\left(\dfrac{m^2}{4}-mn+n^2\right)+\left(\dfrac{m^2}{4}-mp+p^2\right)+\left(\dfrac{m^2}{4}-mq+q^2\right)+\left(\dfrac{m^2}{4}-m+1\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2\) \(+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\) \(\ge0\) (luôn đúng)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{2}-n=0\\\dfrac{m}{2}-p=0\\\dfrac{m}{2}-q=0\\\dfrac{m}{2}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=\dfrac{m}{2}\\p=\dfrac{m}{2}\\q=\dfrac{m}{2}\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=p=q=1\end{matrix}\right.\)

Vậy \(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\) (Đpcm)

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

NV
17 tháng 6 2020

a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

b/ \(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow0< 1\) (hiển nhiên đúng)

d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(m=n=1\)

e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

27 tháng 3 2018

Với mọi m;n;p;q dương nhé bạn!

Áp dụng bất đẳng thức AM-GM cho 2 số dương:

\(\dfrac{m^2}{4}+n^2\ge2\sqrt{\dfrac{m^2n^2}{4}}=mn\)

\(\)\(\dfrac{m^2}{4}+p^2\ge2\sqrt{\dfrac{m^2p^2}{4}}=mp\)

\(\dfrac{m^2}{4}+q^2\ge2\sqrt{\dfrac{m^2q^2}{4}}=mq\)

\(\dfrac{m^2}{4}+1\ge2\sqrt{\dfrac{m^2}{4}}=m\)

Cộng theo vế: \(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)

NV
16 tháng 2 2020

\(VT\ge\frac{1}{3}\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(VT\ge\frac{1}{3}\left(a+b+c+\frac{9}{a+b+c}\right)^3=\frac{100}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

10 tháng 12 2022

=m^3-3m^2+3m-1-m^3+3m^2-m+3-2m

=2 là số nguyên tố

20 tháng 3 2018

a) \(a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b)\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

20 tháng 3 2018

Câu a :

Ta có :

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Dấu = xảy ra khi \(a=b\)

Câu b :

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )

Dấu = xảy ra khi \(a=b=c\)

4 tháng 5 2018

Áp dụng BĐT : ( x - y)2 ≥ 0∀x,y

⇒ x2 + y2 ≥ 2xy

Ta có : a2 + b2 ≥ 2ab ( *)

b2 + c2 ≥ 2bc (**)

c2 + a2 ≥ 2ac (***)

Cộng từng vế của ( *;**;***) , ta có :

2( a2 + b2 + c2) ≥ 2( ab + bc + ac)

⇔ 3( a2 + b2 +c2) ≥ ( a + b + c)2

⇔ a2 + b2 + c2\(\dfrac{3}{4}\)

5 tháng 5 2018

Đặt \(a=x+\dfrac{1}{2};b=y+\dfrac{1}{2};c=z+\dfrac{1}{2}\)

Ta có: \(a^2+b^2+c^2=\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z+\dfrac{1}{2}\right)^2\)

\(=x^2+x+\dfrac{1}{4}+y^2+y+\dfrac{1}{4}+z^2+z+\dfrac{1}{4}\)

\(=x^2+y^2+z^2+\left(x+y+z\right)+\dfrac{3}{4}\)

\(=x^2+y^2+z^2+\dfrac{3}{2}+\dfrac{3}{4}\)

\(\Rightarrow x^2+y^2+x^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

=> đpcm