Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b,c,d >0\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^4-2c^2d^2+d^4\right)+\left(2a^2b^2+2c^2d^2-4abcd\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(a^2b^2-2abcd+c^2d^2\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(ab-cd\right)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(a^2-b^2\right)^2\ge0\forall a,b\\\left(c^2-d^2\right)^2\ge0\forall c,d\\\left(ab-cd\right)^2\ge0\forall a,b,c,d\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\left(\text{đ}pcm\right)\)
Áp dụng BĐT Cauchy, ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)
Dấu = xảy ra khi a=b=c=d
Vậy a=b=c=d
\(a^4+b^4+c^4+d^4=4abcd.\)
\(\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\)
\(\Leftrightarrow a^4+b^4-2a^2b^2+c^4+d^4-2c^2d^2-4abcd+2a^2b^2+2c^2d^2=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(a^2b^2-2abcd+c^2d^2\right)=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+\left(ab-cd\right)^2=0\)
VÌ \(\left(a^2-b^2\right)^2\ge0;\left(c^2-d^2\right)^2\ge0\)
\(\left(ab-cd\right)^2\ge0\)
mà \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+\left(ab-cd\right)^2=0\)
nên \(\hept{\begin{cases}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=b^2\\c^2=d^2\\ab=cd\end{cases}}}\Leftrightarrow\hept{\begin{cases}a=b\\c=d\\a^2=c^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\c=d\\a=c\end{cases}}\Leftrightarrow a=b=c=d\left(dcpcm\right)\)
Chứng minh bđt phụ :
Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)với \(\forall x;y;z\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(*)
Áp dụng bđt (*), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)
Lại có :\(a^2b^2+b^2c^2+c^2a^2\ge abbc+bcca+caab=abc\left(a+b+c\right)\)(2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Dấu = xảy ra khi a=b=c
Vậy \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Phần dấu = xảy ra không biết bạn có cần không nhưng thầy mình bảo phải ghi vào mới được điểm tối đa
Áp dụng bất đẳng thức cauchy ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)
Vậy \(a^4+b^4+c^4+d^4\ge4abcd\)
Áp dụng BĐT cô-si cho 2 số không âm ta có:
a4+b4\(\ge\)2a2b2
c4+d4\(\ge\)2c2d2
=>a4+b4+c4+d4\(\ge\)2(a2b2+c2d2)(1)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\end{matrix}\right.\)
Áp dụng BĐT coossi cho 2 số không âm ta có:
a2b2+c2d2\(\ge\)2abcd
=>(1) tương đương a4+b4+c4+d4\(\ge\)4abcd
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}ab=cd\\a^2=b^2\\c^2=d^2\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a=-b\\c=-d\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}-a=b\\c=-d\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}a=b\\c=d\end{matrix}\right.\)
Vậy...
Gán giá trị: a = b = c = d = 1
Ta có, giá trị phải thỏa mãn điều kiện \(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow1^4+1^4+1^4+1^4=1+1+1+1\)
\(=4\) (thỏa mãn yêu cầu đề bài)
\(\RightarrowĐPCM\)
Ps: Làm xàm chút thôi! nhưng vẫn có thể đúng!
áp dụng bất đẳng thức a2+b2\(\ge\)2ab, dấu bằng xảy ra khi a=b
Ta có a4+b4\(\ge\)2a2b2,dấu bằng xảy ra khi a=b
c4+d4\(\ge\)2c2d2,dấu bằng xảy ra khi c=d
a2b2+c2d2\(\ge\)2abcd,dấu bằng xảy ra khi ab=cd
Vậy a4+b4+c4+d4\(\ge\)2a2b2+2c2d2=2(a2b2+c2d2)\(\ge\)2.2abcd=4abcd
Dấu = xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\)suy ra a=b=c=d suy ra a,b,c,d là 4 cạnh của 1 hình thoi
Ta có:\(a^4;b^4;c^4;d^4\ge0;\forall a;b;c;d\)
Áp dụng BĐT AM-GM, ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}\)
\(a^4+b^4+c^4+d^4\ge4abcd\) ( đfcm )