Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b,c,d >0\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^4-2c^2d^2+d^4\right)+\left(2a^2b^2+2c^2d^2-4abcd\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(a^2b^2-2abcd+c^2d^2\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(ab-cd\right)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(a^2-b^2\right)^2\ge0\forall a,b\\\left(c^2-d^2\right)^2\ge0\forall c,d\\\left(ab-cd\right)^2\ge0\forall a,b,c,d\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\left(\text{đ}pcm\right)\)
Ta có:\(a^4;b^4;c^4;d^4\ge0;\forall a;b;c;d\)
Áp dụng BĐT AM-GM, ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}\)
\(a^4+b^4+c^4+d^4\ge4abcd\) ( đfcm )
\(a^4+b^4+c^4+d^4=4abcd.\)
\(\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\)
\(\Leftrightarrow a^4+b^4-2a^2b^2+c^4+d^4-2c^2d^2-4abcd+2a^2b^2+2c^2d^2=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(a^2b^2-2abcd+c^2d^2\right)=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+\left(ab-cd\right)^2=0\)
VÌ \(\left(a^2-b^2\right)^2\ge0;\left(c^2-d^2\right)^2\ge0\)
\(\left(ab-cd\right)^2\ge0\)
mà \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+\left(ab-cd\right)^2=0\)
nên \(\hept{\begin{cases}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=b^2\\c^2=d^2\\ab=cd\end{cases}}}\Leftrightarrow\hept{\begin{cases}a=b\\c=d\\a^2=c^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\c=d\\a=c\end{cases}}\Leftrightarrow a=b=c=d\left(dcpcm\right)\)
\(0=a^4+b^4+c^4+d^4-4abcd\)
\(=\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(a^2b^2-2ab.cd+c^2d^2\right)\)
\(=\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+\left(ab-cd\right)^2\)
Dấu "=" xảy ra khi và chỉ khi các số trong ngoặc bằng 0 hay \(a=b=c=d\)
a^4+b^4+c^4+d^4=4abcd
=>a^4-2a^2b^4+b^4+c^4-2c^2d^2+d^4+2a^2 b^2-4abcd + 2c^2 d^2=0
=> (a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0
Tới đây có thể suy ra a+b+c+d
Áp dụng bất đẳng thức Cô-si cho các số dương \(a^4,b^4,c^4,d^4\), ta có:
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}\)
\(=2a^2b^2+2c^2d^2\ge2\sqrt{2a^2b^2\cdot2c^2d^2}=2\cdot2\left|abcd\right|=4\left|abcd\right|\ge4abcd\)
Dấu "=" khi a = b = c = d.
Cách khác áp dụng cho 4 số luôn:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4\left|abcd\right|\ge4abcd\).
Vậy......................
Áp dụng BĐT Cô-si ta có:
a4 + b4 ≥ 2a2b2
c4 + d4 ≥ 2c2d2
⇒ a4 + b4 + c4 + d4 ≥ 2a2b2 + 2c2d2
⇔ VT ≥ 2\(\sqrt{4\text{a}^2b^2c^2d^2}\) = 4abcd = VP
Vậy a4 + b4 + c4 + d4 ≥ 4abcd
Áp dụng BĐT Cauchy, ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)
Dấu = xảy ra khi a=b=c=d
Vậy a=b=c=d
1 dòng thôi bạn
Tuy đề bài k cho \(a;b;c;d\) dương nhưng \(a^4;b^4;c^4;d^4\) chắc chắn dương
Cô-Si: \(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)
áp dụng BĐT cô si cho 4 số ko âm
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4.b^4.c^4.d^4}\)
<=> \(a^4+b^4+c^4+d^4\ge4abcd\) (đpcm)