K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

1.

\(AB^2+AC^2=BC^2\\ hay\left(3x\right)^2+\left(4x\right)^2=\left(5x\right)^2\\\Leftrightarrow 9x^2+16x^2=25x^2\\\Leftrightarrow 25x^2=25x^2\left(tm\right)\)

Vậy trong trường hợp này \(\Delta ABC\) là tam giác vuông.

13 tháng 3 2020

2.

\(\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}=a\\ \Rightarrow\left\{{}\begin{matrix}AB=3a\\AC=4a\\BC=5a\end{matrix}\right.\)

Ta có: \(AB^2+AC^2=9a^2+16a^2=25a^2=BC^2=\left(5a\right)^2=25a^2\left(tm\right)\)

Vậy trong TH này tam giác ABC là tam giác vuông (Theo đl PTG đảo)

14 tháng 1 2020

giúp mình với

14 tháng 1 2020

mình cần gấp

a: \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: Đặt AB/3=AC/4=BC/5=k

=>AB=3k; AC=4k; BC=5k

Vì \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

a)Ta có:

\(AB^2+AC^2= \left(3x\right)^2+\left(4x\right)^2=9x^2+16x^2=25x^2=\left(5x\right)^2=BC^2\)Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

b)Ta có:

\(AB^2+AC^2=\left(5x\right)^2+\left(12x\right)^2=25x^2+144x^2=169x^2=\left(13x\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

c)Ta có:

\(AB^2+BC^2=\left(40x\right)^2+\left(9x\right)^2=1600x^2+81x^2=1681x^2=\left(41x\right)^2=AC^2\)

Theo định lí Pytago đảo, △ABC vuông tại B (đpcm)

d)Ta có:

\(20AB=15AC=12BC\Rightarrow\frac{20AB}{60}=\frac{15AC}{60}=\frac{12BC}{60}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\\BC=5k\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=\left(3k\right)^2+\left(4k\right)^2=9k^2+16k^2=25k^2=\left(5k\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

e)Ta có:

\(65AB=156AC=60BC\Rightarrow\frac{65AB}{780}=\frac{156AC}{780}=\frac{60BC}{780}\Rightarrow\frac{AB}{12}=\frac{AC}{5}=\frac{BC}{13}=k\)\(\Rightarrow\left\{{}\begin{matrix}AB=12k\\AC=5k\\BC=13k\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=\left(12k\right)^2+\left(5k\right)^2=144k^2+25k^2=169k^2=\left(13k\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại Ma, Chứng minh tam giác ABM = tam giác ACM b, Biết AB = 20cm ; BC =  24cm . Tính MB và AMc, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K Chứng minh tam giac AHK cân tại A . Tính MH2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MDa, Tính BCb,Chứng...
Đọc tiếp

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại M

a, Chứng minh tam giác ABM = tam giác ACM 

b, Biết AB = 20cm ; BC =  24cm . Tính MB và AM

c, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K 

Chứng minh tam giac AHK cân tại A . Tính MH

2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MD

a, Tính BC

b,Chứng minh AB = CD ; AB song song với CD

c,Chứng minh góc BAM > góc CAM 

d, Gọi H là trung điểm của BM , trên đường thẳng AH lấy E sao cho AH = HE , CE cắt AD tại F . Chứng minh F là trung điểm của CE

3, Chứng minh tổng sau không phải là số nguyên :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{44^2}+\frac{1}{45^2}\)

4, Tìm x;y biết : \(\frac{x}{y}=\frac{-3}{8}\)và \(x^2-y^2=\frac{-44}{5}\)

 

0