Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(BD=BA\Rightarrow\Delta BAD\) cân tại B
\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)
Có: \(\widehat{BDA}+\widehat{DAC}=90^o\) (cùng bằng BAC = 90 độ)
\(\Rightarrow\widehat{HAD}=\widehat{DAC}\)
=> AD là tia phân giác HAC
b) \(\Delta ADH;\Delta ADK\) có:
\(\widehat{HAD}=\widehat{KAD}\)
\(\Rightarrow\Delta ADH=\Delta ADK\)
\(\Rightarrow AK=AH\)
c) Có: \(DC>KC\) (tam giác KDC vuông, cạnh DC là cạnh huyền)
\(\Rightarrow DC+BD+AK>KC+BD+AK\)
\(\Rightarrow BC+AK< AC+BD\)
d) \(\Rightarrow AB+AC>BC+AH\) (AK = AH, AB = AD)
a) Xét \(\Delta ABC\) có:
\(AB^2+AC^2=\left(5x\right)^2+\left(12x\right)^2\)
=> \(AB^2+AC^2=25x^2+144x^2\)
=> \(AB^2+AC^2=169x^2\) (1).
\(BC^2=\left(13x\right)^2\)
=> \(BC^2=169x^2\) (2).
Từ (1) và (2) => \(AB^2+AC^2=BC^2\left(=169x^2\right).\)
=> \(\Delta ABC\) vuông tại \(A\) (định lí Py - ta - go đảo) (đpcm).
Chúc bạn học tốt!
a: \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Đặt AB/3=AC/4=BC/5=k
=>AB=3k; AC=4k; BC=5k
Vì \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
A B C M D E K F I
a) Gọi tia phân giác của ∠BAC cắt DE tại K
Vì AK ⊥ DE ( gt )
=> △ ADK vuông tại K và △ AEK vuông tại K
Xét tam giác vuông ADK và tam giác vuông AEK có:
AK chung
∠ A1 = ∠ A2 ( AK là tia phân giác của ∠ BAC )
=> △ ADK = △ AEK (g.c.g )
=> AD = AE ( 2 cạnh tương ứng )
=> △ ADE cân tại A
Vì BF // AC ( gt )
=> ∠ BFD = ∠AEF ( 2 góc đồng vị ) ( 1 )
Ta có ∠ D = ∠AEF ( △ ADE cân tại A ) ( 2 )
Từ (1) và (2) => ∠ BFD = ∠D
=> △ BDF cân tại B
b) Vì BF // AC ( gt )
=> ∠ MBF = ∠ ECM ( 2 góc so le trong )
Xét tam giác BMF và tam giác EMC có:
∠MBF = ∠ECM ( cmt )
MB = MC ( M là t/ đ BC )
∠ BMF = ∠ EMC ( 2 góc đối đỉnh )
=> △ BMF = △ EMC ( g.c.g )
=> MF = ME ( 2 cạnh tương ứng )
Mà M nằm giữa 2 điểm F và E
=> M là t/đ của EF.
c) Trên tia CA lấy I sao cho IE = IC
Mà CE = BD ( △ BMF = △ EMC )
=> CE = EI = BD
=> IC = EI = BD + BD = 2BD
AC - AI = IC = 2BD
AB = AD - BD
AI = AE - IC
Mà AD = AE ( △ ADE cân tại A )
Và BD = IE ( cmt )
=> AB = AI
Mà AC - AI = AB
=> AC - AB = 2BD.
Chúc bn học tốt nha ! ❤❤
ai rảnh toán thì giúp mình nha . Đây là đề của Sở GDĐT tỉnh Nam Định thi toán 7 cuối năm
tự vẽ hình nha!^^
1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)
b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ
\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ
mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)
2/a/\(Xét\Delta ABIva\Delta HBIcó:\)
góc BAI=BHI=90 độ
BỊ chung;góc B1=góc B2
Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)
b/ vì IA=IH(do tgiac ABI=tgiac HBI)
Vậy tam giác AIH cân tại I
c/Vì AB=AH(do tam giác BIA= tam giác BIH)
\(\Rightarrow\)tam giác BAH cân tại B
mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)
\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a)Ta có:
\(AB^2+AC^2= \left(3x\right)^2+\left(4x\right)^2=9x^2+16x^2=25x^2=\left(5x\right)^2=BC^2\)Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)
b)Ta có:
\(AB^2+AC^2=\left(5x\right)^2+\left(12x\right)^2=25x^2+144x^2=169x^2=\left(13x\right)^2=BC^2\)
Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)
c)Ta có:
\(AB^2+BC^2=\left(40x\right)^2+\left(9x\right)^2=1600x^2+81x^2=1681x^2=\left(41x\right)^2=AC^2\)
Theo định lí Pytago đảo, △ABC vuông tại B (đpcm)
d)Ta có:
\(20AB=15AC=12BC\Rightarrow\frac{20AB}{60}=\frac{15AC}{60}=\frac{12BC}{60}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\\BC=5k\end{matrix}\right.\)
\(\Rightarrow AB^2+AC^2=\left(3k\right)^2+\left(4k\right)^2=9k^2+16k^2=25k^2=\left(5k\right)^2=BC^2\)
Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)
e)Ta có:
\(65AB=156AC=60BC\Rightarrow\frac{65AB}{780}=\frac{156AC}{780}=\frac{60BC}{780}\Rightarrow\frac{AB}{12}=\frac{AC}{5}=\frac{BC}{13}=k\)\(\Rightarrow\left\{{}\begin{matrix}AB=12k\\AC=5k\\BC=13k\end{matrix}\right.\)
\(\Rightarrow AB^2+AC^2=\left(12k\right)^2+\left(5k\right)^2=144k^2+25k^2=169k^2=\left(13k\right)^2=BC^2\)
Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)