Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
C1 :
a) Xét tam giác ABC có BC2=AB2+AC2( Định lý Py-ta-go)
Thay số:BC2=62+82
BC2=36+64=100
=>BC=10(cm)
b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2
Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:
Bi chung, góc ABI= góc HBI ( cmt)
=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)
c)Gọi giao của AH và BI là K
Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng)
Xét tam giác AKB và tam giác HKB có:
AB=HB (cmt)
góc ABK=góc HBK(cmt)
BK chung
=. tam giác AKB= tam giác HKB ( c.g.c)
=> KB=KH ( 2 cạnh tương ứng)
=> K là trung điểm của BH (1)
Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2)
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
C2 :
a)ÁP DỤNG ĐỊNH LÝ PYTAGO THUẬN TRÒG TAM GIÁC ABC (BAC = 90 ĐỘ ) CÓ :
AB2 +AC2=BC2
=>52+72=BC2
=>BC2=25+49=74
HAY BC = CĂN BẬC HAI 74 =8.6 (CM)
b)XÉT HAI TAM GIÁC ABE (BAE = 90 ĐỘ ) VÀ TAM GIÁC DBE (BDE=90 ĐỘ ) CÓ :
AB=BD (GT)
BE LÀ CẠNH HUYỀN CHUNG
=>TAM GIÁC ABE = TAM GIÁC DBE (CẠNH HUYỀN _CẠNH GÓC VUÔNG )
C ) DO TAM GIÁC ABE = TAM GIÁC DBE (CÂU B )
=>AE=DE (2 CẠNH TƯƠNG ỨNG )
XÉT HAI TAM GIÁC AEF (EAF = 90 ĐỘ ) VÀ TAM GIÁC DEC (EDC = 90 ĐỘ ) CÓ :
E1 =E2
AE=DE (CMT)
=>TAM GIÁC AEF=TAM GIÁC DEC (CGV _ GÓC NHỌN KỀ )
=>ÈF=EC (2 CẠNH TƯƠNG ỨNG)
3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)
a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))
Cạnh huyền AE chung
=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)
b/ Ta có \(\Delta ACE\)= \(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)
Gọi M là giao điểm của AE và CK.
\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)
\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))
Cạnh AM chung
=> \(\Delta ACM\)= \(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)
và\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)
Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)
=> 2\(\widehat{AMC}\)= 180o
=> \(\widehat{AMC}\)= 90o
=> AM \(\perp\)CK (2)
Từ (1) và (2) => AE là đường trung trực của CK (đpcm)
hình : tự vẽ
a) Xét hai tam giác vuông BAH và BEH có :
góc ABH = góc EBH ( do BH là đường p/g của góc ABE )
BH là cạnh chung
nên tam giác BAH = tam giác BEH ( cạnh huyền - góc nhọn )
c) Do tam giác ABC vuông tại A => góc BAC = 90 độ
Có : góc BAC + góc CAI = 180 độ ( hai góc kề bù )
( hay góc BAH + góC HAI )
90 độ + góc CAI = 180 độ
=> góc CAI =90 độ
Do tam giác ABH = tam giác EBH ( cm phần a ) => AH=EH ( hai cạnh tương ứng )
Do HE vuông góc với BC => góc HEC = 90 độ
Xét hai tam giác AHI và EHC có :
góc HAI = góc HEC ( = 90độ )
AH=EH ( cm trên )
góc AHI = góc EHI ( hai góc đối đỉnh )
nên tam giác AHI = tam giác EHC ( g.c.g )
Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: HB < AH < HC.
b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.
Chứng minh: CI là tia phân giác của góc ACB.
c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).
Chứng minh: ID + IC > KE+ DC.
Câu hỏi tương tự Đọc thêm
tự vẽ hình nha!^^
1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)
b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ
\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ
mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)
2/a/\(Xét\Delta ABIva\Delta HBIcó:\)
góc BAI=BHI=90 độ
BỊ chung;góc B1=góc B2
Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)
b/ vì IA=IH(do tgiac ABI=tgiac HBI)
Vậy tam giác AIH cân tại I
c/Vì AB=AH(do tam giác BIA= tam giác BIH)
\(\Rightarrow\)tam giác BAH cân tại B
mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)
\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.