Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)
\(\Leftrightarrow3\left(a+b+c+d\right)^2\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
có thiếu ĐK nào k bạn ?
áp dụng BĐT cauchy :
\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)
việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))
dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)
BĐT\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2+6\left(ab+bc+cd+da+bd+ca\right)\ge8\left(ab+bc+cd+da+bd+ca\right)\)
\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2-2\left(ab+bc+cd+da+bd+ca\right)\ge0\) (*)
Ta có: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd\)
\(d^2+a^2\ge2da;b^2+d^2\ge2bd;c^2+a^2\ge2ca\)
Cộng theo vế các BĐT trên suy ra \(3a^2+3b^2+3c^2+3d^2\ge2\left(ab+bc+cd+da+bd+ca\right)\)
Do vậy BĐT (*) đúng hay ta có đpcm.
P/s: EM còn khá dốt BĐT,mong được các anh chị chỉ bảo cho ạ!
Cần cù bù thông minh ^^
\(BDT\Leftrightarrow\frac{1}{9}\left(-3a+b+c+d\right)^2+\frac{2}{9}\left(2b-c-d\right)^2+\frac{2}{3}\left(c-d\right)^2\ge0\)
Hihi mình phân tích hơi nham nhở thông cảm nha :(
=(ac+bd)(ac+bd)+(ad-bc)(ad-bc)
=ac2+abcd+abcd+bd2+ad2-abcd-abcd+bc2
=a2.c2+b2.d2+a2.d2+b2.c2
=a2(c2+d2)+b2(d2+c2)=(a2+b2)(c2+d2)
Đặt \(x=a+b+c;y=ab+bc+ac;z=abc\)
Suy ra : \(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
\(\Leftrightarrow2\left(1+z\right)+\sqrt{2\left(x^2+y^2+z^2-2xz-2y+1\right)}\ge x+y+z+1\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-2xz-2y+1\right)\ge\left(x+y-z-1\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2-2xy-2xz+2x+2yz-2y-2z+1\ge0\)
\(\Leftrightarrow\left(x-y-z+1\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
B1: https://olm.vn/hoi-dap/question/133327.html
B2: áp dụng bđt Bu-nhi-a-cop-xki với 2 bộ số (a;b) và (c;d) ra luôn
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
Theo giả thiết \(a^2+b^2+c^2+d^2=1\Rightarrow0< a,b,c,d< 1\)
Ta có: \(2\left(1-a\right)\left(1-b\right)=2-2\left(a+b\right)+2ab=a^2+b^2+c^2+d^2+1\)\(-2a-2b+2ab-2cd+2cd=\left(a+b-1\right)^2+\left(c-d\right)^2+2cd\ge2cd\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge cd\)(*)
Tương tự ta có: \(\left(1-c\right)\left(1-d\right)\ge ab\)(**)
Nhân theo từng vế cùng chiều của hai BĐT (*) và (**), ta được: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\ge abcd\)
Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{2}\)
XH
(a^2 + b^2 )( c^2 + d^2 ) - ( ac + bd )^2
= a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 - a^2.c^2 - b^2.d^2 - 2.ab.cd
= a^2.d^2 + b^2.c^2 + 2a.b.c.d
= (ad + bc )^2 >=0
Vậy (a^2 + b^2 )(c^2 + d^2 ) <= ( ........)