K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

ko bít

30 tháng 8 2020

Mình chịu bạn nhé, muốn giúp mà ko đc.

1 tháng 9 2019

Ở câu a ko có chữ " b " nhé

a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)

b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)

\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)

\(=-60-144\sqrt{2}+30\sqrt{2}+144\)

\(=84-114\sqrt{2}\)

Anh vào đây nhé, link này có bài của anh này, chúc anh học tốt !

Câu hỏi của Tùng Lâm Phạm - Toán lớp 9 | Học trực tuyến

9 tháng 10 2016
 

\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right)\sqrt{5}-\left(3\sqrt{\frac{1}{10}}+10\right)=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\frac{3\sqrt{10}}{10}-10\)

\(=-3\sqrt{10}+10-\frac{3\sqrt{10}}{10}-10=-3\sqrt{10}-\frac{3\sqrt{10}}{10}=-3\sqrt{10}\left(1+\frac{1}{10}\right)=\frac{-33\sqrt{10}}{10}=-3,3\sqrt{10}\)

 

 

9 tháng 10 2016

Đề bài sai nhé.

26 tháng 10 2017

Biến đổi vế trái

\(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)=\(\left(\sqrt{3+\sqrt{5}}\right)^2.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

=\(\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{4}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\sqrt{10\left(3+\sqrt{5}\right)}-2\sqrt{2\left(3+\sqrt{5}\right)}\)

\(=2\sqrt{30+10\sqrt{5}}-2\sqrt{6+2\sqrt{5}}\)

\(=2\sqrt{\left(5+\sqrt{5}\right)^2}-2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=2\left(5+\sqrt{5}\right)-2\left(\sqrt{5}+1\right)\)

\(=10+2\sqrt{5}-2\sqrt{5}-2=8\)

Sau khi biến đổi ta thấy vế trái bằng vế phải. Vậy đẳng thức đã được chứng minh

14 tháng 8 2019

\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}=8\)

\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)^2=8\)

\(\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)=8\)

\(18-6\sqrt{5}+6\sqrt{5}-10=8\)

8=8 ( luôn đúng )

10 tháng 9 2019

\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\cdot\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{2}\cdot\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left(3+\sqrt{5}\right)\cdot\left(\sqrt{5}-1\right)^2\)

\(=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)

\(=2\cdot\left(3+\sqrt{5}\right)\cdot\left(3-\sqrt{5}\right)\)

\(=2\cdot\left(9-5\right)\)

\(=2-4=8\)

10 tháng 9 2019

@buithianhtho giúp mk vs

13 tháng 8 2016
Dùng quy nạp chứng minh đi bạn
29 tháng 6 2020

có 1 định lý luôn tồn tại A;B nguyên sao cho: 

\(\left(3+\sqrt{5}\right)^n=A+B\sqrt{x};\left(3-\sqrt{5}\right)^n=A-B\sqrt{x}\text{ cộng lại suy ra đpcm}\)