Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR
\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\) là một số nguyên chia hết cho 1024
Ta có \(y=\frac{x}{4^5}=\left(\frac{3+\sqrt{5}}{2}\right)^{10}+\left(\frac{3-\sqrt{5}}{2}\right)^{10}\)
Đặt \(a=\frac{3+\sqrt{5}}{2}\); \(a=\frac{3-\sqrt{5}}{2}\Rightarrow\left\{{}\begin{matrix}ab=1\\a+b=3\end{matrix}\right.\)
Xét \(S_n=a^n+b^n\) (\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\) \(\Rightarrow S_n>0\) )
\(\Rightarrow S_0=2;\) \(S_1=3\);
Ta có \(S_1.S_n=\left(a+b\right)\left(a^n+b^n\right)=a^{n+1}+b^{n+1}+a.b^n+b.a^n\)
\(S_1S_n=a^{n+1}+b^{n+1}+a^{n-1}+b^{n-1}\) (do \(a=\frac{1}{b}\) và \(b=\frac{1}{a}\))
\(S_1S_n=S_{n+1}+S_{n-1}\)
\(\Rightarrow S_{n+1}=2S_n-S_{n-1}\)
Do \(S_0\) và \(S_1\) nguyên \(\Rightarrow S_n\) nguyên với mọi \(n\ge1\)
\(\Rightarrow S_n\) nguyên dương với mọi \(n\ge1\)
\(\Rightarrow y=S_{10}\in N\Rightarrow x=4^5.y=1024.y⋮1024\)
a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)
b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)
\(=-60-144\sqrt{2}+30\sqrt{2}+144\)
\(=84-114\sqrt{2}\)
\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right)\sqrt{5}-\left(3\sqrt{\frac{1}{10}}+10\right)=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\frac{3\sqrt{10}}{10}-10\)
\(=-3\sqrt{10}+10-\frac{3\sqrt{10}}{10}-10=-3\sqrt{10}-\frac{3\sqrt{10}}{10}=-3\sqrt{10}\left(1+\frac{1}{10}\right)=\frac{-33\sqrt{10}}{10}=-3,3\sqrt{10}\)
Anh vào đây nhé, link này có bài của anh này, chúc anh học tốt !
Câu hỏi của Tùng Lâm Phạm - Toán lớp 9 | Học trực tuyến