Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm trc khi hỏi Câu hỏi của Nguyễn Thúy Hường - Toán lớp 8 - Học toán với OnlineMath
Em mới lớp 7 nên chỉ biết giải bài 2 thôi
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)
\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)
\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)
\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\) Thao vào P ta được :
\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8a^3}{a^3}=8\)
1
xét hiệu \(x^5+y^5-x^4y-xy^4=x^4\left(x-y\right)-y^4\left(x-y\right)\)
\(=\left(x^4-y^4\right)\left(x-y\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)^2\)
tự lập luộn nha \(\Rightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Rightarrow x^5+y^5\ge x^4y+xy^4\)
+ xét hiệu
x^5 + y^5 - (x^4.y + x.y^4)
= x^5 - x^4.y + y^5 - x.y^4
= x^4.(x - y) + y^4.(y - x)
= (x^4 - y^4).(x - y)
= (x + y)(x - y)^2.(x^2 + y^2) >= 0
-> ĐCPCM
\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)
\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)
\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=4\)
Vậy giá trị bt ko phụ thuộc vào biến
bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk
Giải:
\(x^8-x^5-\dfrac{1}{x}+\dfrac{1}{x^4}\ge0\)
\(\Leftrightarrow x^4\left(x^8-x^5-\dfrac{1}{x}+\dfrac{1}{x^4}\right)\ge0\)
\(\Leftrightarrow x^{12}-x^9-x^3+1\ge0\)
\(\Leftrightarrow x^9\left(x^3-1\right)-\left(x^3-1\right)\ge0\)
\(\Leftrightarrow\left(x^3-1\right)\left(x^9-1\right)\ge0\)
\(\Leftrightarrow\left(x^3-1\right)\left(x^3-1\right)\left(x^6+x^3+1\right)\ge0\)
\(\Leftrightarrow\left(x^3-1\right)^2\left(x^6+x^3+1\right)\ge0\) (luôn đúng)
Vậy ...
a/ \(\left(\frac{x+y}{2}\right)^2\ge xy\)
Ta có \(\left(\frac{x+y}{2}\right)^2-xy\)
\(=\frac{\left(x+y\right)^2}{2^2}-xy\)
\(=\frac{x^2+2xy+y^2}{4}-\frac{4xy}{4}\)
\(=\frac{x^2+2xy+y^2-4xy}{4}\)
\(=\frac{x^2-2xy+y^2}{4}=\frac{\left(x-y\right)^2}{4}\)
mak ta lại có :
\(\left(x-y\right)^2\ge0\Rightarrow\frac{\left(x-y\right)^2}{4}\ge0\)
\(\Rightarrow\left(\frac{x+y}{2}\right)^2-xy\ge0\)\(\Rightarrow\left(\frac{x+y}{2}\right)^2\ge xy\)
b/ \(x^2\ge2y\left(x-y\right)\)
ta có \(x^2-2y\left(x-y\right)\)
\(=x^2-2xy+2y^2\)
\(=x^2-2xy+y^2+y^2\)
\(=\left(x^2-2xy+y^2\right)+y^2\)
\(=\left(x-y\right)^2+y^2\)
Ta lại có \(\orbr{\begin{cases}\left(x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+y^2\ge0\)
\(\Rightarrow x^2-2y\left(x-y\right)\ge0\)
\(\Rightarrow x^2\ge2y\left(x-y\right)\)
c/ \(4a^4-4a^3+a^2\ge0\)
ta có : \(4a^4-4a^3+a^3\)
\(=a^2\left(4a^2-4a+1\right)\)
\(=a^2\left(2a-1\right)^2\)
ta có \(\orbr{\begin{cases}a^2\ge0\\\left(2a-1\right)^2\ge0\end{cases}}\)
\(\Rightarrow a^2\left(2a-1\right)^2\ge0\)
\(\Rightarrow4a^4-4a^3+a^3\ge0\)
a)Áp dụng BĐT AM-GM ta có:
\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)
\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)
Xảy ra khi \(x=y\)
b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)
Đúng với AM-GM 4 số
Xảy ra khi \(x=y=z=t\)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt cosi)
=> \(\frac{\left(x+y\right)^2}{4}\ge4\) <=> \(\left(x+y\right)^2\ge16\) <=> \(x+y\ge4\)
CM bđt tương đương: \(\frac{1}{x+3}+\frac{1}{y+3}\le\frac{2}{5}\)
<=> \(\frac{5\left(x+3\right)+5\left(y+3\right)}{\left(y+3\right)\left(y+3\right)}\le2\)
<=> \(2\left(xy+3x+3y+9\right)\ge5x+5y+30\)
<=> \(2.4+6\left(x+y\right)+18-5\left(x+y\right)-30\ge0\)
<=> \(x+y-4\ge0\) (vì x + y \(\ge\)4)
<=> \(4-4\ge0\) (Luôn đúng)
=> ĐPCM
x^5+y^5 >= x^4y+xy^4
<=>x^5+y^5-x^4y-xy^4 >= 0
<=>x^4(x-y)-y^4(x-y) >= 0
<=>(x-y)(x^4-y^4) >= 0
<=>(x-y)(x^2-y^2)(x^2+y^2) >= 0
<=>(x-y)^2(x+y)(x^2+y^2) >= 0 (luôn đúng do x+y >= 0)
Vậy bđt đầu là đúng