Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
câu a là thế này : 2 số tự nhiên liên tiếp thì sẽ là 1 số chẵn và 1 số lẽ mà số chẵn chắc chắn chia ht cho 2
và
1 số lẽ nhân với 1 số chẵn sẽ là 1 số chẵn
=> 2 số tự nhiên liên tiếp chia ht cho 2
Đặt A=a(a-1)-ab(a+b)
TH1 : a là số chẵn, b là số lẻ
=> a(a-1) và ab(a+b) là các số chẵn
=> a(a-1) và ab(a+b) đều chia hết cho 2
=> A chia hết cho 2 (1)
TH2 : a là số lẻ, b là số chẵn
=> a(a-1) và ab(a+b) là các số chẵn
=> A chia hết cho 2 (2)
TH3 : a và b là các số lẻ
=> a-1 là số chẵn nên a(a-1) cũng là số chẵn
=> a+b là số chẵn nên ab(a+b) cũng là số chẵn
=> a(a-1)-ab(a+b) là số chẵn
=> A chia hết cho 2 (3)
TH$ : a và b là các số chẵn
=> a(a-1) và ab(a+b) là các số chẵn
=> A chia hết cho 2 (4)
Từ (1), (2), (3) và (4)
=> A chia hết cho 2
Vậy A chia hết cho 2.
Tớ cũng không chắc!
Câu 1: a) Gọi 3 số đó là a ;a+1;a+2
Ta có: a+a+1+a+2=3a+3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luon chia hết cho 3
b) Gọi 5 số đó là a;a+1;a+2;a+3;a+4
Ta có: a+a+1+a+2+a+3+a+4 =5a+5
5 chia hết cho 5 => 5a chia hết cho 5
=> Tổng của 5 số tự nhiên liên tiếp luôn chia hết cho 5
Câu 2 :Tụ làm nhé , mk chịu lun à
5a + 8b ⋮ 3
6a - a + 6b + 2b ⋮ 3
(6a + 6b) + (-a + 2b) ⋮ 3
6(a + b) + (-a + 2b) ⋮ 3
6(a + b)⋮ 3
⇒ - a + 2b ⋮ 3 (tính chất chia hết của một tổng)
b; 5a + 8b ⋮ 3
2.(5a + 8b) ⋮ 3
10a + 16b ⋮ 3
10a + b + 15b ⋮ 3
15b ⋮ 3
⇒ 10a + b ⋮ 3 (tính chất chia hết của một tổng)
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3