Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+4+42+43+44+...+458+459
A=(1+4)+(42+43)+...+(458+459)
A=1(1+4)+42(1+4)+44(1+4)+...+458(1+4)
A=1.5+42.5+44.5+...+458.5
A=(1+42+44+...+458)5
Vậy A chia hết cho 5
Bài trên mình gom hai số liền kề nhau vào 1 nhóm.
Bài tiếp theo bạn gom 3 số vào một nhóm va làm tương tự như bài trên.Bài tiếp theo nữa bạn gom 4 số vào 1 nhóm và lảm tương tự như bài trên
\(H=2+2^2+2^3+2^4+...+2^{60}\)
\(H=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(H=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)
\(H=6+2^2\cdot6+...+2^{58}\cdot6\)
\(H=6\left(1+2^2+...+2^{58}\right)⋮3\)
H=2+2^2+2^3+2^4+..+2^60
=2x(1+2+2^2)+2^4(1+2+2^2)+...+2^58x(1+2+2^2)
=2x7+2^4x7+...2^58x7
=7(2+2^4+...+2^58):7
chia hết cho 15 thì nhóm 4 cái 1 nhá: 2(1+2+2^2+2^3)
Giải:
\(A=4+4^2+4^3+4^4+...+4^{59}+4^{60}\)
\(\Leftrightarrow A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{59}+4^{60}\right)\)
\(\Leftrightarrow A=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)
\(\Leftrightarrow A=4.5+4^3.5+...+4^{59}.5\)
\(\Leftrightarrow A=5\left(4+4^3+...+4^{59}\right)⋮5\)
\(\Leftrightarrow A=4+4^2+4^3+4^4+...+4^{59}+4^{60}⋮5\)
Vậy \(A⋮5\).
Chúc bạn học tốt!
Đặt \(A=2+2^2+2^3+2^4+....+2^{59}+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(\Leftrightarrow A=2\cdot3+2^3\cdot3+....+2^{59}\cdot3\)
\(\Leftrightarrow A=3\cdot\left(2+2^3+....+2^{59}\right)\)
Vậy A chia hết cho 3 (đpcm)
*) Chứng mình A \(⋮\)3
Ta có : A= ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260)
= 2. ( 1 + 2 ) + 23 . ( 1 + 2) + ... + 259 . ( 1+ 2)
= 2 . 3 + 23 . 3 + .....+ 259 . 3
= 3. (2 + 23 + .... + 259 ) \(⋮\)3
Vậy A \(⋮\)3 => đpcm
Bạn ơi, sao 23 + 25 mà lại tới 260?
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)
\(=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)
\(=5+4^2.5+...+4^{58}.5\)
\(=5.\left(1+4^2+...+4^{58}\right)⋮5\)
\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮5\)
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)
\(=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)
\(=21+4^3.21+...+4^{57}.21\)
\(=21.\left(1+4^3+...+4^{57}\right)⋮21\)
\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮21\)
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4+4^2+4^3\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)
\(=\left(1+4+4^2+4^3\right)+...+4^{56}.\left(1+4+4^2+4^3\right)\)
\(=85+...+4^{56}.85\)
\(=85.\left(1+...+4^{56}\right)\)