Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, sao 23 + 25 mà lại tới 260?
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)
\(=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)
\(=5+4^2.5+...+4^{58}.5\)
\(=5.\left(1+4^2+...+4^{58}\right)⋮5\)
\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮5\)
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)
\(=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)
\(=21+4^3.21+...+4^{57}.21\)
\(=21.\left(1+4^3+...+4^{57}\right)⋮21\)
\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮21\)
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4+4^2+4^3\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)
\(=\left(1+4+4^2+4^3\right)+...+4^{56}.\left(1+4+4^2+4^3\right)\)
\(=85+...+4^{56}.85\)
\(=85.\left(1+...+4^{56}\right)\)
Ta có: A=3+32+33+34+..+359+360
=(3+32)+(33+34)+..+(359+360)
=3.(1+3)+33.(1+3)+..+359.(1+3)
=3.4+33.4+..+359.4
=4.(3+33+..+359) (chia hết cho 4)
Nên A chia hết cho 4
Ta có: A=3+32+33+34+..+359+360
=(3+32)+(33+34)+..+(359+360)
=3.(1+3)+33.(1+3)+..+359.(1+3)
=3.4+33.4+..+359.4
=4.(3+33+..+359) (chia hết cho 4)
Nên A chia hết cho 4
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)
A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)
A=5+42.5+...+448.5A=5+42.5+...+448.5
A=5(1+42+...+448)A=5(1+42+...+448)
⇒A⋮5
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
k cho mik đi mik cảm ơn
4A=4+4^2+4^3+.....+4^60
4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)
3A=4^60-1
A=\(\frac{4^{60}-1}{3}\)
Chia hết cho 5
(1+4)+(4^2+4^3)+...+(4^58+4^59)
=5+4^2(1+4)+...+4^58(1+4)
=5+4^2.5+...+4^58.5
=5(1+4^2+...+4^58)chia hết cho 5
Chia hết cho 21;85 làm tương tự
Chia hết cho 21 nhóm 3 số nhé
Chia hết cho 85 nhóm 4 số nhé
a) Gọi A = 4 + 4 ^1 + 4 ^2 + ... + 4^60
Vì 4 chia hết cho 2; 4^2 chia hết cho 2 và nói chung là tất cả các số hạng đều là số chẵn
=> A chia hết cho 2
\(A=4\cdot\left(4+1\right)+4^3\cdot\left(1+4\right)+...+4^{59}\cdot\left(1+4\right)\)
\(A=4\cdot5+4^3\cdot5+...+5^{59}\cdot5\)
\(A=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\left(đpcm\right)\)
b)
\(B=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^9\cdot\left(1+5\right)\)
\(B=5\cdot6+5^3\cdot6+...+5^9\cdot6\)
\(B=6\cdot\left(5+5^3+...+5^9\right)⋮6\left(đpcm\right)\)
Giải:
\(A=4+4^2+4^3+4^4+...+4^{59}+4^{60}\)
\(\Leftrightarrow A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{59}+4^{60}\right)\)
\(\Leftrightarrow A=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)
\(\Leftrightarrow A=4.5+4^3.5+...+4^{59}.5\)
\(\Leftrightarrow A=5\left(4+4^3+...+4^{59}\right)⋮5\)
\(\Leftrightarrow A=4+4^2+4^3+4^4+...+4^{59}+4^{60}⋮5\)
Vậy \(A⋮5\).
Chúc bạn học tốt!