K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^3+y^3-z^3+3xyz\)

\(=\left(x+y\right)^3-z^3-3xy\left(x+y\right)+3xyz\)

\(=\left(x+y-z\right)\left(x^2+2xy+y^2+xz+yz+z^2\right)-3xy\left(x+y-z\right)\)

\(=\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)⋮x+y-z\)

29 tháng 6 2017

Ta có : x+y+z = 0

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

29 tháng 6 2017

x + y + z = 0

x + y = -z

( x + y )3 = ( -z )3

x3 + 3x2y +3xy2 + y3 = -z3

x3 + y3 + z3 = 3x2y - 3xy2

x3 + y3 + z3 = - 3xy ( x + y )

x3 + y3 + z3 = -3xy. ( -z )

x3 + y3 + z3 = 3xyz ( đpcm )

24 tháng 1 2017

Giải

\(x^3+y^3-z^3+3xyz\)

= \(\left(x+y\right)^3-z^3-3x^2y-3xy^2+3xyz\)

= \(\left(x+y-z\right)\left[\left(x +y\right)^2+\left(x+y\right)z+z^2\right]-3xy\left(x+y-z\right)\)

= \(\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)\)

Vậy \(x^3+y^3-z^3+3xyz\) chia hết cho x + y - z và được thương là:

\(x^2+y^2+z^2-xy+xz+yz\)

19 tháng 8 2019

Lời giải :

\(x+y+z=0\)

\(\Leftrightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)(đpcm)

19 tháng 8 2019

cảm ơn bạn

\(\dfrac{x^3+y^3-z^3+3xyz}{x+y-z}\)

\(=\dfrac{\left(x+y\right)^3-z^3-3xy\left(x+y\right)+3xyz}{x+y-z}\)

\(=\dfrac{\left(x+y-z\right)\left(x^2+2xy+y^2+xz+yz+z^2\right)-3xy\left(x+y-z\right)}{x+y-z}\)

\(=x^2+y^2+z^2-xy+xz+yz\)

4 tháng 10 2019

ta có thể cm x^3+y^3+z^3=3xyz =>(x+y+z)(a^2+b^2+c^2-ab-ac-bc)=0

=>a^2+b^2+c^2-ab-ac-bc=0

nhân cả 2 vế với 2 ta đc

2.(x^2+y^2+z^2-xz-yz-yx)=2.0=0

=2x^2+2y^2+2z^2-2xy-2xz-2yz

=>(y^2-2yx+x^2)+(y^2-2xz+z^2)+(x^2-2xz+z^2)=0

<=> (y-x)^2+(y-z)^2+(x-z)^2=0

mà ta lại có  (y-x)^2>=0 ;  (y-z)^2>=0 ;  (x-z)^2>=0

 và (y-x)^2+(y-x)^2+(x-z)^2=0

 <=>(y-x)^2=0<=>y=x

  <=>(y-z)^2=0 <=>y=z

  <=>(x-z)^2=0<=>x=z

=>x=y=z

17 tháng 4 2020

nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

TL
24 tháng 3 2020

Ta có: x+y+z=0⇔x+y=−z

⇔(x+y)3=(−z)3

⇔x3+3x2y+3xy2+y3=−z3

⇔x3+y3+z3=−3x2y−3xy2

⇔x3+y3+z3=−3xy(x+y)

⇔x3+y3+z3=−3xy(−z)=3xyz(đpcm)

5 tháng 7 2017

Ace Legona giúp vs ạ bài 1 thui cx đc