\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{25}>75\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

.............................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.........+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+.....+\dfrac{1}{10}=\dfrac{100}{10}=10\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+......+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right)\)

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)

\(\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{121}}\)

\(\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{121}}\)

................

\(\frac{1}{\sqrt{121}}=\frac{1}{\sqrt{121}}\)

Suy ra \(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+.............+\(\frac{1}{\sqrt{121}}\)<\(\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{121}}+......\frac{1}{\sqrt{121}}\)=\(\frac{121}{11}\)=11(đpcm)(vì có 121 chữ số)\(\frac{1}{\sqrt{121}}\))

30 tháng 3 2019

Khuyển Dạ Xoa : \(\sqrt{1}< \sqrt{121}\Rightarrow\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{121}}\)  chứ?

18 tháng 3 2017

tra Google

2 tháng 8 2016

Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}}\)(vì 1 < n) (1)

            \(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}\)(vì  2 < n) (2)

            ................................................

              \(\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)(n)

Cộng các vế trái với nhau,các vế phải với nhau,ta có :

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}.n\left(=\sqrt{n}\right)\)(từ 1 đến n có n số tự nhiên).Vậy ta có đpcm.

2 tháng 8 2016

   thank you bạn nha

27 tháng 5 2017

mk không biết mình mới lớp 5