K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

ta có:

35n^2 + 99n + 70 = (7n + 10) x (5n + 7)

Ap dung tinh chat a chia het cho 7n + 10 va chia het cho 5n + 7 nen a chia het cho  35n^2 + 99n +70.

naniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii í

21 tháng 11 2017

Do UCLN(n,6) = 1 nên n không chia hết cho 2 và 3.

n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể có dạng 3k + 1 hoặc 3k + 2

Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j, ta có n = 3.2j + 1 = 6j + 1

Khi đó \(n^2-1=\left(6j+1\right)^2-1=36j^2+12j=12j\left(3j+1\right)\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+1\right)=24t\left(6t+1\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+4\right)=24\left(2t+1\right)\left(3t+2\right)⋮24\)

Vậy \(n^2-1⋮24\)

Nếu \(n=3k+2\) thì k là số lẻ. Đặt \(k=2j+1\Rightarrow n=3\left(2j+1\right)+2=6j+5\)

\(n^2-1=\left(6j+5\right)^2-1=36j^2+60j+24=12j\left(3j+5\right)+24\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+5\right)=24t\left(6t+5\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+8\right)=24\left(2t+1\right)\left(3t+4\right)⋮24\)

Vậy \(n^2-1⋮24\)

Tóm lại , khi UCLN(n ; 6) = 1 thì \(n^2-1⋮6\)

5 tháng 12 2017

2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d

=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d

=> 7(5n+7) chia hết cho d

hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d 1

chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)

Ta có a chia 25 dư 5 => a + 20 chia hết cho 25

        a chia 28 dư 8 => a + 20 chia hết cho 28

        a chia 35 dư 15 => a + 20 chia hết cho 35

=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}

Mà 119 < (a + 20) < 1020

Nên a + 20 = 700

=> a = 680

Vậy số tự nhiên cần tìm là 680

12 tháng 8 2020

a) n + 5 chia hết cho n - 2

=> ( n - 2 ) + 7 chia hết cho n - 2

=> 7 chia hết cho n - 2

=> n - 2 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }

n-2-7-117
n-51310

Vậy n = { -5 ; 1 ; 3 ; 10 )

b) Gọi d là ƯCLN(7n + 10 ; 5n + 7)

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)

\(\Rightarrow35n+50-35n-49⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

=> ƯCLN(7n + 10 ; 5n + 7) = 1

=> 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau với mọi n thuộc N ( đpcm ) 

12 tháng 8 2020

Bài làm:

a) \(\frac{n+5}{n-2}=\frac{\left(n-2\right)+7}{n-2}=1+\frac{7}{n-2}\)

Để \(\left(n+5\right)⋮\left(n-2\right)\) thì \(\frac{7}{n-2}\inℤ\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow n\in\left\{-5;1;3;9\right\}\)

b) Gọi \(\left(7n+10;5n+7\right)=d\)

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(7n+10\right)⋮d\\2\left(5n+7\right)⋮d\end{cases}}\)

\(\Rightarrow14n+20-\left(10n+14\right)⋮d\)

\(\Leftrightarrow4n+6⋮d\) , mà \(5n+7⋮d\)

\(\Rightarrow5n+7-\left(4n+6\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\pm1\)

=> 7n+10 và 5n+7 nguyên tố cùng nhau

=> đpcm