K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

ta có: S = 3 + 3^2 + 3^3 + ...+3^1997 + 3^1998

S = (3 + 3^2 + 3^3) + (3^4+3^5+3^6) + ...+  ( 3^1996 + 3^1997 + 3^1998)

S = 3.(1+3+3^2) + 3^4.(1+3+3^2) + ...+ 3^1996.(1+3+3^2)

S = 3.13 + 3^4.13 + ...+ 3^1996.13

S = 13.(3 + 3^4 + 3^1996) chia hết cho 13 (1)

ta có: S = 3 + 3^2 + 3^3+...+3^1997+3^1998

S = (3+3^2) + (3^3+3^4) +...+(3^1997+3^1998)

S = 3.(1+3) + 3^3.(1+3)+...+3^1997.(1+3)

S = 3.4 +3^3.4 +...+3^1997.4

S = 4.(3+3^3 + ...+ 3^1997) chia hết cho 4

=> S chia hết cho 2 (2)

Từ (1);(2) => S chia hết cho 13.2 = 26

=> S chia hết cho 26

21 tháng 7 2018

Ta có : S = 3 + 32 + 33 + ... + 31997 + 31998 .

=>        S = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 31997 + 31998 ) .

=>        S = 12 . ( 1 + 32 + 34 + ... + 31996 ) ⋮ 2 .

và S = 3 + 32 + 33 + ... + 31997 + 31998 .

=> S = (  3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 31996 + 31997 + 31998 ) .

=> S = 39 . ( 1 + ... + 31995 ) ⋮ 13 .

Vì 16 = 13 . 2 và ( 2 , 13 ) = 1 nên S ⋮ 26 .

Vậy S  26

17 tháng 3 2021

+ Với \(n=1\Rightarrow\left(7^n+1\right)\left(7^n+2\right)=8.9⋮3\)

+ Giả sử có \(A=\left(7^k+1\right)\left(7^k+2\right)=7^{2k}+3.7^k+2⋮3\) Ta cần c/m \(B=\left(7^{k+1}+1\right)\left(7^{k+1}+2\right)⋮3\)

Ta có

\(B=7^{2k+2}+3.7^{k+1}+2=7^2.7^{2k}+3.7.7^k+2\)

\(B=\left(7^{2k}+3.7^k+2\right)+48.7^{2k}+18.7^k=A+3\left(16.7^{2k}+6.7^k\right)\)

Ta có \(A⋮3;3\left(16.7^{2k}+6.7^k\right)⋮3\Rightarrow B⋮3\)

\(\Rightarrow\left(7^n+1\right)\left(7^n+2\right)⋮3\forall n\)

(Dùng phương pháp quy nạp)

25 tháng 4 2020

1) Đặt \(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3\)

Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)

hay \(A⋮3\)(đpcm)

2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{1996}.13\)

\(=39+3^3.39+...+3^{1995}.39\)

Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)

hay \(B⋮39\)(đpcm)

25 tháng 4 2020

a) 2+22+23+...+2100

=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)

=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)

=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)

=2.31+26.31+....+296.31

=31(2+26+....+296)

=> đpcm

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

18 tháng 11 2015

\(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(S=3.\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1995}+3^{1996}+3^{1997}\right)\)

\(S=3.13+13.3^4+...+13.3^{1995}\)

=>S chia hết cho 13 vì mỗi số hạng đều chia hết cho 13

=>dpcm

18 tháng 11 2015

Ta có:

\(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)

\(=12\left(1+3^2+3^4+...+3^{1996}\right)\) chia hết cho  \(2\)

Mặt khác, ta lại có \(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=39\left(1+...+3^{1995}\right)\)  chia hết cho  \(13\)

Vì  \(26=2.13\)  và  \(\left(2;13\right)=1\)

Do đó:  \(S\) chia hết cho  \(26\)