Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giup minh lam nhanh nhanh len minh can gap ai la dung minh se k cho
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}\)
= \(\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\right)\)
< \(\frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\right)\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\right)\)
= \(\frac{1}{2^2}.\left(2-\frac{1}{2005}\right)=\frac{1}{2}-\frac{1}{4\left(2005\right)}< \frac{1}{2}\)
Vậy \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}< \frac{1}{2}\)
tương tự ta có:
1\21 + 1\39 > 60\30^2
1\22 + 1\38 > 60\30^2
........
1\29 + 1\31 > 60\30^2
=> S > 10.60\30^2 + 1\30 -1\20
=> S > 20\30 + 1\30 -1\20 > 7\12
lại có:
1\21+..+1\25 < 5\21
1\26+..+1\30 < 5\26
....
1\36+..+1\40 < 5\36
=> S < 5\21 + 5\26 + 5\31 + 5\36
=> S < 5.(1\21 + 1\24 + 1\30 + 1\36)
=> S < 5\3.(1\7 + 1\8 + 1\10 + 1\12)
do 1\7 + 1\10 +1\12 < 3\8
=> S < 5\3.(4\8) = 5\6
(cm S > 7\12 gần như adụng cosi ở phổ thông... 1\a + 1\(n-a) >= 2\(a.(n-a)
.......... .
bạn trang L mắc sai lầm nghiêm trọng....
1\21 +..+1\40 < 1\21 +..+1\21 = 20\21 chứ không phải lớn hơn...
bời vì 1\(21+a) < 1\21 với mọi a>0
tương tự S >1\2 chứ không phải < 1\2
để ktra lại rất đơn giản... theo bạn Trang L ta có:
7\12 < 20\21 < S < 1\2 < 5\6
điều này hoàn toàn vô lý với nền toán học thế giới hiện nay
nói cách khác.. theo Trang L ta có:
.. S > 20\21 mà 20\21 > 5\6 => S >5\6 vậy kết luận S < 5\6 kiểu gì đây....?
........ .....
(nhìn bạn Trang L giải tôi cũng tý bị nhầm... nhưng chú ý hơn mới thấy đc bạn ấy bị nhầm BDT, a> b => 1\a < 1\b chư không phải 1\a>1\b)
Đặt A là biểu thức của đề bài
Ta có \(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\right)\)
\(A< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\right)\)
\(A< \frac{1}{2^2}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\right)\)
\(A< \frac{1}{2^2}\left(1+1-\frac{1}{2005}\right)< \frac{1}{2^2}\left(1+1\right)=\frac{1}{2^2}.2=\frac{1}{2}\)
Vậy A<1/2
Ta có:
B=1-1/2²-1/3²-...-1/2004²
=1-(1/2²+1/3²+...+1/2004²)
=1-[1/(2.2)+1/(3.3)+...+1/(2004.2004)]
Ta thấy:
1/(2.2)>1/(2.3)
1/(3.3)>1/(3.4)
...
1/(2004.2004)>1/(2004.2005)
Cộng từng vế của các bất đẳng thức trên ta được:
1/(2.2)+1/(3.3)+...+1/(2004.2004) > 1/(2.3)+1/(3.4)+...+1/(2004.2005) = 1/(3.2)+1/(4.3)+...+1/(2005.2004)
= (3-2)/(3.2)+(4-3)/(4.3)+...+(2005-2004)/(2005.2004)
=3/(3.2)-2/(3.2)+4/(4.3)-3/(4.3)+...+2005/(2005.2004)-2004/(2005.2004)
=1/2-1/3+1/3-1/4+...+1/2004-1/2005
=1/2-1/2005
=2003/4010
=> B>1-2003/4010=2007/4010>2007/4022028=1/2004
Hay B>1/2004
tích nha
Sai đề rồi.
Đề phải là: \(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
Giải như sau:
\(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\left(đpcm\right).\)
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Hello Cúp Bơ Quang, ta là Phát đây. Mi bí bài đó hả, ta cũng chẳng biết.
FUCK OFF