Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
a) Đặt UCLN (2n+1;2n+3)=d
TC UCLN(2n+1;2n+3)=d
=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)
=>(2n+3)-(2n+1):d
=>2:d
=>d e U(2)={1;2}
Mà 2n+1 lẻ=> d lẻ=>d=1
b)
Đặt UCLN (2n+5;3n+7)=d
TC UCLN(2n+5;3n+7)=d
=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)
=>(6n+15)-(6n+14):d
=>1:d
=>d=1
phần c bạn tự làm nốt nhé
học tốt nhé
a, Đặt d = ƯCLN(2n+3;4n+8)
=> 2(2n+3) ⋮ d; (4n+8) ⋮ d
=> [(4n+8) – (4n+6)] ⋮ d
=> 2 ⋮ d => d ⋮ {1;2}
Mặt khác 2n+3 là số lẻ nên d ≠ 2.
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+3 và 4n+8 nguyên tố cùng nhau
b, Đặt d = ƯCLN(2n+5;3n+7)
=> 3(2n+5) ⋮ d; 2(3n+7) ⋮ d
=> [(6n+15) – (6n+14)] ⋮ d
=> 1 ⋮ d => d = 1
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+5 và 3n+7 nguyên tố cùng nhau.
c, Đặt d = ƯCLN(7n+10;5n+7)
=> 5(7n+10) ⋮ d; 7(5n+7) ⋮ d
=> [(35n+50) – (35n+49)] ⋮ d
=> 1 ⋮ d => d = 1
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 7n+10 và 5n+7 nguyên tố cùng nhau
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
Mình VD cho bạn 2 bài thôi nha, các câu khác tương tự:
b)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
⇒ d ∈ Ư(2) ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3 ⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
c)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
⇒ d ∈ Ư(2) ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3 ⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
a) Gọi ƯC cua 2n+1 ; 3n+1 là d
\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)
b) Gọi ƯC cua 5n+6 và 8n+7 là d
\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)
c)7n+10 và 5n+7
Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*
\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)
\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)
Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d
35n+50-35n-49 \(⋮\)d
(35n-35n)+(50-49)\(⋮\)d
0 + 1 \(⋮\)d
1 \(⋮\)d
Vì:1\(⋮\)d nên d\(\in\)Ư(1)
Mà:Ư(1)={1} nên d=1
Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3
Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d
=> 2k+1 chia hết cho d; 2k+3 chia hết cho d
=> (2k+1 - 2k-3) chia hết cho d
=> -2 chia hết cho d
=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}
mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
b) Gọi ƯCLN(2n+5;3n+7) là d
=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d
3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
=> (6n+15-6n-14) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
mà d lớn nhất => d = 1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Giúp mình với mn
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d