Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây
Ta có: \(3^{2n}+3^n+1\)
Vì n không chia hết cho 3 nên: n có dạng là \(3k+1\)
Thế vào: Ta có: \(3^{6k+2}+3^{3k+1}+1\)
\(=729^k\cdot9+27^k\cdot3+1\)
Mặt khác: \(729\equiv27\equiv1\)(mod 13)
Do đó: \(729^k\cdot9+27^k\cdot3+1\equiv1\cdot9+1\cdot3+1=13\)(mod 13)
Vậy .............
P/s: Xét luôn trường hợp \(n=3k+2\)với cách làm tương tự trên
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
Câu hỏi của Minh Nguyệt - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo.
Ta có : n \(⋮̸\)2 \(\Rightarrow n\)lẻ \(\Rightarrow n^2\)lẻ \(\Rightarrow4n^2\)chẵn
Mà \(3n+5\)chẵn
Suy ra \(4n^2+3n+5\)chẵn nên \(⋮\)2 ( 1 )
Ta có : n \(⋮̸\)3
\(\Rightarrow\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)
+) n = 3k + 1 thì \(4n^2+3n+5=4\left(3k+1\right)^2+3\left(3k+1\right)+5=36k^2+33k+12⋮3\)
+) n = 3k + 2 thì \(4n^2+3n+5=4\left(3k+2\right)^2+3\left(3k+2\right)+5=36k^2+57k+27⋮3\)
vậy với n \(⋮̸\)3 thì \(4n^2+3n+5⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với ( 2 ; 3 ) = 1 nên \(4n^2+3n+5⋮6\)
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)