Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét n = 3k + 1 với k nguyên ta có :
\(P=3^{2\left(3k+1\right)}+3^{3k+1}+1=9^{3k+1}+3^{3k+1}+1\)
\(=9^{3k+1}-9+27^k.3-3+13\)\(=9\left(729^k-1\right)+3\left(27^k-1\right)+13\)
Ta có : \(\left(729^k-1\right)⋮\left(729-1\right)⋮13\forall x\in Z\) và \(\left(27^k-1\right)⋮\left(27-1\right)⋮13\forall x\in Z\)
\(\Rightarrow9\left(729^k-1\right)+3\left(27^k-1\right)+13⋮13\)
Hay P chia hết cho 13
Xét tương tự với \(n=3k+2\) ta có đpcm
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
Bài 1:
a, \(77^{n+1}=77^n.77+77^n\)
\(=77^n\left(77+1\right)=77^n.78⋮78\)
\(\Rightarrowđpcm\)
b, \(n^2\left(n-1\right)+\left(n^2-n\right)\)
\(=n^2\left(n-1\right)+n\left(n-1\right)\)
\(=\left(n^2+n\right)\left(n-1\right)=n\left(n+1\right)\left(n-1\right)\)
Vì 3 số liên tiếp chia hết cho 2, 3
Mà ( 2; 3 ) = 1
\(\Rightarrow n\left(n+1\right)\left(n-1\right)⋮6\)
\(\Rightarrowđpcm\)
c, tương tự
Bài 2:
a, \(x+y=xy\)
\(\Leftrightarrow x-xy+y=0\)
\(\Leftrightarrow x\left(1-y\right)-1+y=-1\)
\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\1-y=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x+1=-1\\1-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy x = y = 2 hoặc x = y = 0
b, tương tự
Câu hỏi của Minh Nguyệt - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo.