K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

Ta có n5 +1999n +2017 = n- n+2000n + 2015 +2 ( n E Z )

Ta thấy: n5 +1999n +2017 = n- n+2000n + 2015 +2 ( n E Z ) chia cho 5 dư 2

 vì không có số chính phương nào chia 5 dư 2 

 Vậy  n5 +1999n +2017 ( n E Z ) không phải là số chính phương
 

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Sửa đề thành \(n\in\mathbb{N}\), vì nếu $n$ nguyên âm thì biểu thức không nguyên.

Đặt \(A=n^5+1999n+2017=n^5-n+2000n+2017\)

\(=n(n^4-1)+2000n+2017\)

\(=n(n^2-1)(n^2+1)+2000n+2017\)

--------------

Ta biết đến tính chất rất quen thuộc là một số chính phương chia $5$ thì dư $0,1$ hoặc $4$

Nếu \(n^2\equiv 0\pmod 5\Rightarrow n\equiv 0\pmod 5\) (do $5$ là snt)

\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)

Nếu \(n^2\equiv 1\pmod 5\Rightarrow n^2-1\equiv 0\pmod 5\)

\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)

Nếu \(n^2\equiv 4\pmod 5\Rightarrow n^2+1\equiv 5\equiv 0\pmod 5\)

\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)

Tóm lại \(n(n^2-1)(n^2+1)\vdots 5, \forall n\in\mathbb{N}\)

\(\Rightarrow A=n(n^2-1)(n^2+1)+2000n+2015+2\) chia $5$ dư $2$. Do đó $A$ không thể là scp vì scp chia $5$ dư $0,1$ hoặc $4$

Ta có đpcm.

6 tháng 11 2017

Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:

\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Ta thấy 34 = 52 + 32 nên ta có bảng:

2x-15-53-3
x3-22-1
2y-15-53-3
y3-32-1

Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)

7 tháng 11 2017

Xét \(x^2+\frac{1}{x^2}\)=\(\left(x+\frac{1}{x}\right)^2-2\in Z\).Giả sử đúng đến n=k , ta sẽ c/m n đúng đến k+1.

Điều này là hiển nhiên vì \(x^{k+1}+\frac{1}{x^{k+1}}=\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)-x^{k-1}-\frac{1}{x^{k-1}}\in Z\)