K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

\(n^3-n=n\left(n^2-1\right)\) \(=n\left(n-1\right)\left(n+1\right)\)\(=\)\(\left(n-1\right)\times n\times\left(n+1\right)\)

Ta thấy: \(\left(n-1\right),n,\left(n+1\right)\)là 3 số tự nhiên liên tiếp

mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 6

nên \(n^3-n⋮6\)

9 tháng 2 2021

n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 )

Vì n, ( n - 1 ), ( n + 1 ) là 3 số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3

mà 2.3 = 6 => n( n - 1 )( n + 1 ) chia hết cho 6

hay n3 - n chia hết cho 6 ( đpcm )

22 tháng 9 2016

\(A=n^4+6n^3+11n^2+6n\)

    \(=n\left(n^3+6n^2+11n+6\right)\)

    \(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

    \(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

    \(=n\left(n+1\right)\left(n^2+5n+6\right)\)

    \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24

    

5 tháng 8 2021

A=n4-3n3+5n2-9n+6

=> A=n4+3n3-6n3-n2+6n2-3n-6n+6

=>A=(n4+3n3-n2-3n)+(6-6n+6n2-6n3)

=>A=[n3(n+3)-n(n+3)]+6(1-n+n2-n3)

=>A=(n3-n)(n+3)+6(1-n+n2-n3)

Mà (n3-n) chia hết cho 6

=> (n3-n)(n+3) chia hết cho 6

Lại có 6(1-n+n2-n3) chia hết cho 6

=> (n3-n)(n+3)+6(1-n+n2-n3) chia hết cho 6

=> A chia hết cho 6 (đpcm)

2 tháng 1 2018

Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d 

Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮3\)

Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\)            (1)

Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\)             (2)

Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)

Vậy thì  ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.

9 tháng 2 2021

Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ

Khi đó \(2^n-1=\left(2k+1\right)^2\)  \(\left(k\inℕ^∗\right)\)

\(\Leftrightarrow2^n-1=4k^2+4k+1\)

\(\Leftrightarrow2^n=4k^2+4k+2\) 

Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4

Mà n>1 nên 2n chia hết cho 4

=> vô lý =>  điều g/s sai

=> 2n - 1 không là 1 SCP

4 tháng 12 2019

Bạn có thể kiểm tra lại đề o , sai đề rồi

mình tìm thấy 1 số giá trị như x=0,x=13 là snt nha bạn