Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có :a/b = c/d suy ra a/c = b/d
áp dụng tính chất dãy tính chất tỉ số bằng nhau
a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k;b=d.k\)
Ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
+) \(\frac{a+b}{c+d}=\frac{b.k+b}{d.k+d}=\frac{b.\left(k+1\right)}{d.\left(k+1\right)}=\frac{b}{d}\) (1)
+) \(\frac{a-b}{c-d}=\frac{b.k-b}{d.k-d}=\frac{b.\left(k-1\right)}{d.\left(k-1\right)}=\frac{b}{d}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Rightarrowđpcm\)
Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)
=>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Áp dụng tính chất tỉ lệ thức , ta có :
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có :a/b = c/d suy ra a/c = b/d
Aps dụng tính chất dãy tính chất tỉ số bừng nhau
a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d
ta có a/b=c/d=>ad=cb
ta có ad+cd=bc+cd
(a+c)d=(b+d)c
=>a+c/b+d=c/d
mà a/b=c/d => a/b=a+c/b+d
Aps dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\)
Aps dung tính chất của dãy tỉ số bằng nhau ta có:
a/b =c/d =a+c/b+d
Vậy a/b =a+c/b+d