K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Do các số nguyên tố lớn hơn 7 đều là số lẻ

\(\Rightarrow\) Tổng của 4 số nguyên tố lớn hơn 7 là số chẵn nên chia hết cho 2

\(\Rightarrow\) Tổng của 4 số nguyên tố lớn hơn 7 là hợp số

20 tháng 10 2021

Câu 9:

Vì 2015;1020 đều chia hết cho 5

nên 2015+1020 là hợp số

21 tháng 10 2021

câu 9

Ta có 2515;1020⋮5

=>(2515+1020)⋮5

Câu 1:

\(25^{15}+10^{20}\)

\(=5^{30}+5^{20}\cdot2^{20}\)

\(=5^{20}\left(5^{10}+2^{20}\right)⋮5^{20}\)

=>Đây là hợp số

9 tháng 3 2017

NHANH NÀO

2 tháng 12 2023

Để chứng minh rằng trong 7 số nguyên tố lớn hơn 3 bất kỳ, luôn tồn tại hai số có hiệu chia hết cho 18, ta sẽ sử dụng một phương pháp đơn giản.

Chọn 7 số nguyên tố lớn hơn 3: Đặt các số này lần lượt là p₁, p₂, p₃, p₄, p₅, p₆, p₇.

Xét các số pᵢ (i = 1, 2, …, 7):

Ta biết rằng mỗi số nguyên tố lớn hơn 3 đều có dạng 6k ± 1 (với k là một số nguyên).Nếu pᵢ ≡ 1 (mod 6), thì pᵢ - 1 ≡ 0 (mod 6) và pᵢ + 1 ≡ 2 (mod 6).Nếu pᵢ ≡ 5 (mod 6), thì pᵢ - 1 ≡ 4 (mod 6) và pᵢ + 1 ≡ 0 (mod 6).

Xét các hiệu của các số pᵢ:

Nếu có hai số pᵢ và pⱼ sao cho pᵢ - pⱼ = 18, thì hiệu này chia hết cho 18.Xét trường hợp:Nếu pᵢ ≡ 1 (mod 6) và pⱼ ≡ 5 (mod 6), thì pᵢ - pⱼ = 18.Nếu pᵢ ≡ 5 (mod 6) và pⱼ ≡ 1 (mod 6), cũng có pᵢ - pⱼ = 18.

Vậy, luôn tồn tại hai số nguyên tố lớn hơn 3 trong 7 số đã cho có hiệu chia hết cho 18. 🌟

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số