Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chia hết 126:
S=(5+5^4)+(5^2+5^5)+...+(5^2001+5^2004)
S=126+5(1+5^3)+....+5^2000(1+5^3)
S=126+5.126+...+5^2001.126
S=126(1+5+...+5^2001) => S chia hết 126
chia hết 65
S=(5+5^3)+(5^2+5^4)+...+(5^2002+5^2004)
S=130+5(5+5^3)+...+5^2001(5+5^3)
S=130+5.130+...+5^2001.130
S=130(1+5+...+5^2001)
S=65.2.(1+5+...+5^2001) nên S chia hết 65
chia hết 126 ta có như sau:
S=(5+5^4)+(5^2+5^5)+...+(5^2001+5^2004)
S=126+5(1+5^3)+....+5^2000(1+5^3)
S=126+5.126+...+5^2001.126
S=126(1+5+...+5^2001) => S chia hết 126
chia hết 65
S=(5+5^3)+(5^2+5^4)+...+(5^2002+5^2004)
S=130+5(5+5^3)+...+5^2001(5+5^3)
S=130+5.130+...+5^2001.130
S=130(1+5+...+5^2001)
S=65.2.(1+5+...+5^2001) nên S chia hết 65
Vì n không chia hết cho 3 => n2 không chia hết cho 3
Xét 3 số tự nhiên liên tiếp: n2 - 1;n2; n2 + 1
Vì n2 không chia hết cho 3 => 1 trong 2 số n2 - 1 và n2 + 1 chia hết cho 3 => 1 trong 2 số đó có 1 số là hợp số
Vậy n2 - 1 và n2 + 1 không đồng thời là số nguyên tố
a. Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002+8 chia hết cho 2 và 9.
b. Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hể cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004+14 chia hết cho 2 và 3.
a) \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+....+2^{57}\left(2+2^2+2^3\right)\)
\(A=14+2^3.14+...+2^{57}.14\)
\(A=14\left(1+2^3+...+2^{57}\right)\) chia hết cho 7
b) \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{56}\left(2+2^2+2^3+2^4\right)\)
\(A=30+2^4.30+...+2^{56}.30\)
\(A=30\left(1+2^4+...+2^{56}\right)\) chia hết cho 15
Ta có: A = 2 + 22 + 23 +.....+ 260
=> A = (2 + 22 + 23) + .... + (258 + 259 + 260)
=> A = 2.( 1 + 2 + 4 ) + .... + 258.(1 + 2 + 4)
=> A = 2.7 + .... + 258.7
=> A = 7.(2 + .... + 258)
Ta có : n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư(4) = {1;2;4}
=> n thuộc {2;3;5}
Ta có : n2 + 3 chia hết cho n - 1
\(\Rightarrow\)n2 - 1 + 4 chia hết cho n- 1
\(\Rightarrow\)( n - 1 ) ( n + 1 ) + 4 chia hết cho n - 1
\(\Rightarrow\)4 chia hết cho n - 1
\(\Rightarrow\)n - 1 thuộc Ư (4) = { 1 , 2 , 4 ).
\(\Rightarrow\)n thuộc { 2 , 3 , 5 }
Đặt A = 2 + 22 + 23 + ... + 22004
2A = 22 + 23 + 24 + ... + 22005
2A - A = (22 + 23 + 24 + ... + 22005) - (2 + 22 + 23 + ... + 22004)
A = 22005 - 2
Ta có: \(2^6\equiv1\left(mod21\right)\)
=> \(2^{2004}\equiv1\left(mod21\right)\)
=> 22004 - 1 chia hết cho 21
=> 2.(22004 - 1) chia hết cho 42
=> 22005 - 2 chia hết cho 42
=> A chia hết cho 42 (đpcm)
\(\left(2+2^2+2^3+2^4+2^5+2^6\right)+2^5\left(2+2^2+2^3+2^4+2^5+2^6\right)+...+2^{334}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)
=\(126+2^5.126+...+2^{334}.126=126\left(1+2^5+2^{11}+...+2^{334}\right)\) chia hết cho 126 hay 42