Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề không? Với k = 1 thì 102k - 1 = 100 - 1 = 99 không chia hết cho 19
Chứng minh rằng
\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n\left(n+1\right)}(n\inℕ^∗,n\ne1)\)
Giúp mình với
Với số tự nhiên n khác 0 và 1 ta có:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
=> \(\frac{1}{n}=\frac{1}{n\left(n+1\right)}+\frac{1}{n+1}\)
đk : x khác 0 và -1
\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n\left(n+1\right)}\)
\(< =>\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(< =>\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(đpcm\right)\)
1)
Ta có : \(6a+9b=3.\left(2a+3b\right)\)(đặt 3 làm thừa số chung )
Vì \(3⋮3\)
\(\Leftrightarrow3.\left(2a+3b\right)⋮3\left(đpcm\right)\)
2)
Ta có : \(2a+4b=2a+2b+2b⋮3\)
\(4a+2b=2a+2a+2b\)
Vì \(\hept{\begin{cases}2a⋮3\\2b⋮3\end{cases}}\Rightarrow2a+2a+2b⋮3\Leftrightarrow\left(4a+2b\right)⋮3\)
3)
Ta có : \(\overline{aaa}=a.111=a.3.37\)
Vì 37 chia hết cho 37
<=> a.3.37 chia hết cho 37
<=> \(\overline{aaa}⋮37\)
a) Theo đề bài ra ta có :
ab = 3ab
\(\Rightarrow\) 10a + b = 3ab (1)
\(\Rightarrow\) 10a + b \(⋮\) a
\(\Rightarrow\) b \(⋮\) a
b) Do b = ka nên k < 10 . Thay b = ka vào (1) :
10a + ka = 3a . ka
\(\Rightarrow\) 10 + k = 3ak
\(\Rightarrow\) 10 + k \(⋮\)k
\(\Rightarrow\) 10 \(⋮\) k
c) Do k < 10 nên k \(\in\) { 1 ; 2 ; 5 }
Với k = 1 , thay vào (2) : 11 = 3a , loại
Với k = 2 , thay vào (2) : 12 = 6a \(\Rightarrow\) a = 2 ;
b = ka = 2 . 2 = 4 . Ta có ab = 24 = 3 . 2 . 4
Với k = 5 , thay vào (2) : 15 = 15 \(\Rightarrow\) a = 1 ;
b = ka = 5 . 1 = 5 . Ta có ab = 15 = 3 . 1 . 5
Đáp số : 24 và 15
Cô giáo mình giao bài về nhà làm , mình làm xong sợ sai nên mình nhờ các bạn nhận xét xem mình làm đúng hay sai ạ . Cảm ơn các bạn .
ta có các số có 2 chia hết cho 7 là ...
kể ra và thử từng cái 1 rồi chứng minh nó đúng
:V
gọi d là ƯCLN của 21n+4 và 14n+3
=> 21n+4 chia hết cho d =>2.(21n+4) chia hết cho d
14n+3 chia hết cho d =>3.(14n+3) chia hết cho d
=> (42n+9)-(42n+8) chia hết cho d => 42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)={1}
=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)