K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Ta có:\(abc-cba=6b3\)

\(\Rightarrow100a+10b+c-100c-10b-a=6b3\)

\(\Rightarrow99a-99c=6b3\)

\(\Rightarrow99.\left(a-c\right)=6b3\)

Vì 99.(a-c):99=> 6b3 :99

\(\Rightarrow b=9\Rightarrow a-c=7\)

Bn tính nốt nha

20 tháng 12 2017

b, 1028+8 chia hết cho 9

1028+8=(1027*10)+8=10009+8 chia hết cho 8

(8,9)=1 nên 1028+8 chia hết cho 27

14 tháng 5 2017

t​a có:abcdeg=​1000ab+100cd+eg=999ab+ab+99cd+cd+eg=(999ab+99cd)+(ab+cd+eg)

vì 999ab+99cd chia hết cho 11mà theo bài ra ab+cd+eg​chia hết cho 11.Suy ra abcdeg​chia hết cho 11

14 tháng 5 2017

a, Ta có: abcdeg = ab0000 + cd00 + eg

ab.10000 + cd.100 + eg

ab.9999 + ab + cd.99 + cd + eg

ab.11.909 + ab + cd.11.9 + cd + eg

= 11(ab.909 + cd.9) + (ab + cd + eg)

Vì 11(ab.909 + cd.9) \(⋮\)11 và (ab + cd + eg\(⋮\)11 nên abcdeg \(⋮\)11 (đpcm)

b, Ta có: 1028 + 8 = 100.......008 (27 c/s 0)

Vì 1028 + 8 có 3 chữ số tận cùng là 008 nên 1028 + 8 \(⋮\) 8 (1)

Lại có: 1 + 0 + 0 +....+ 0 + 0 + 8 = 9 \(⋮\)9 => 1028 + 8 \(⋮\) 9  (2)

Mà ƯCLN(8,9) = 1    (3)

Từ (1) ; (2) và (3) suy ra 1028 + 8 \(⋮\)72

Ta có : abcdeg = ab.10000 + cd.100 + eg 

                         = ab.9999 + cd.99 + (ab + cd + eg)

                         = 99(ab.101 + cd) + (ab + cd + eg)

Vì 99(ab.101 + cd) chia hết cho 11 và  (ab + cd + eg) chia hết cho 11

Vậy abcdeg chia hết cho 11

3 tháng 4 2018

a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg 

                             = ab . 9999 + ab + cd . 99 + cd + eg

                             = ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg

                              = (ab . 909 + cd . 9) . 11 + (ab + cd + eg)

  Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11

1 tháng 11 2015

b)ta có:

abcdeg=abx10000+bcx100+eg

           =abx9999+bcx99+ab+bc+eg

vì abx9999 chia hết cho 11 và bcx99 chia hết cho 11 và ab+bc+eg chia hết cho 11(đầu bài đã cho)

=> abcdeg chia hết cho 11(điều phải chứng minh)