\(2+5+8+...+\left(3n-1\right)=\frac{n\left(3n+1\right)}{2}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

n=1=> đẳng thức đúng

giả sử có số n=a thoả mãn pt=>

2+5+8+....+(3a-1)=a(3a+1)/2=(3a^2+a)/2(1)

phải chứng minh n=a+1 thoả mãn pt:

2+5+8+......+(3a+2)=(a+1)(3a+4)/2=(3a^2+7a+4)/2(2)

lấy (2) trừ (1) ta được:

(6a+4)/2=3a+2

=> 0=0 (đúng vs mọi a)

=> đẳng thức (2) đúg, dpcm

7 tháng 1 2016

Gọi ĐTV hay lê chí cường ấy

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=\left(6n^2+30n+n+5\right)-\left(6n^2-3n+10n-5\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10⋮2\)

18 tháng 7 2018

\(3S=3\left(\frac{1}{2.5}+....+\frac{1}{\left(3n+1\right)\left(3n+2\right)}\right)\)

Đến đây thì bạn làm như dạng đơn giản nhé

30 tháng 9 2016

a)\(\left(\frac{1}{5}\right)^{3n-1}=\frac{1}{25}\)

\(\Leftrightarrow\left(\frac{1}{5}\right)^{3n-1}=\left(\frac{1}{5}\right)^2\)

\(\Leftrightarrow3n-1=2\)

\(\Leftrightarrow3n=3\)

\(\Leftrightarrow n=1\)

b)\(\left(\frac{4}{7}\right)^{n+2}=\frac{7}{4}\)

\(\Leftrightarrow\left(\frac{4}{7}\right)^{n+2}=\left(\frac{4}{7}\right)^{-1}\)

\(\Leftrightarrow n+2=-1\)

\(\Leftrightarrow n=-3\)

c)\(\left(\frac{2}{3}\right)^{-n+1}=\frac{3^3}{2^3}\)

\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{3}{2}\right)^3\)

\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{2}{3}\right)^{-3}\)

\(\Leftrightarrow-n+1=-3\)

\(\Leftrightarrow n=-4\)

c)\(\left(0,7\right)^{3n+1}=10^3:7^3\)

\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{10}{7}\right)^3\)

\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{7}{10}\right)^{-3}\)

\(\Leftrightarrow3n+1=-3\)

\(\Leftrightarrow3n=-4\)

\(\Leftrightarrow n=-\frac{4}{3}\)

10 tháng 10 2017

Đặt :

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+.........+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(\Leftrightarrow3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+............+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\)

\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+........+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\)

\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{3n+2}\)

10 tháng 10 2017

@Akai Haruma em không hiểu tại sao bài kia chị lại tick cho bạn đó ạ,đề nói chứng minh,mak bạn đó đã làm hết đâu:

\(VT=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n-1}+\dfrac{1}{3n+2}\right)\)

\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)

\(VT=\dfrac{1}{6}-\dfrac{1}{9n+6}\)

\(VT=\dfrac{9n+6}{54n+36}-\dfrac{6}{54n+36}\)

\(VT=\dfrac{9n+6-6}{54n+36}=\dfrac{9n}{54n+36}=\dfrac{9n}{9\left(6n+4\right)}=\dfrac{n}{6n+4}=VP\left(đpcm\right)\)