Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+.....+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+......+\left(2^{59}+2^{60}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+3\right)+....+2^{59}.\left(1+2\right)\)
\(A=2.3+2^3.3+....+2^{59}.3\)
\(A=3.\left(2+2^3+...+2^{59}\right)⋮3\)
\(\Rightarrow A⋮3\)
Ta có : \(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)
Từ 1 đến 60 có 60 số gồm 30 số chẵn 30 số lẻ
\(A=\left(2+2^3+...+2^{57}+2^{59}\right)+\left(2^2+2^4+...+2^{58}+2^{60}\right)\)
Ghép các cặp lại với nhau vừa đủ 15 cặp có số mũ lẻ và 15 cặp có số mũ chẵn
\(A=\left[\left(2+2^3\right)+...+\left(2^{57}+2^{59}\right)\right]+\left[\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\right]\)
\(A=\left[2\left(1+2^2\right)+...+2^{57}\left(1+2^2\right)\right]+\left[2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\right]\)
\(A=\left[2.5+...+2^{57}.5\right]+\left[2^2.5+...+2^{58}.5\right]\)chia hết cho 5
Mà 3, 5, 7 nguên tố cùng nhau, A chia hết 3, 5, 7 và 3.5.7=105
=> A chia hết cho 105
Theo mình thì giải thế này:
Lũy thừa của 3 và 4 lên thì chỉ chia hết cho chúng lũy thừa lên hoặc chúng.
Mà 3 và 4 nguyên tố cùng nhau với 11 nên không chia hết cho 11.
Vậy ta có điều cần chứng minh.
Chúc em học tốt^^