Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 11^n =............1 ( bằng 1 số luôn có tận cùng là 1 )
=> 11^9+11^8+11^7+...........+1 = .....1 +........1+........+1 ( có tất cả 9 số 11 và 1 số 1 )
=> A sẽ có tận cùng là 0 ( vì có tất cả 10 số có tận cùng là 1)
=> A chia hết cho 5 ( dựa vào dấu hiệu nhận biết 1 số chia hết cho 5 )
b) B=2+2^2+.......+2^60
=( 2+2^2)+(2^3+2^4)+........+(2^59+2^60)
= 2x(1+2)+2^3+(1+2)+.......+2^59x(1+2)
= 2x3+2^3x3+............+2^59x3
= 3x ( 2 + 2^3 + ...........+ 2^59 )
=>B chia hết cho 3
Can you do next post ?
B1 :2n + 5 ⋮ n + 2
<=> 2n + 4 + 1 ⋮ n + 2
<=> 2(n + 2) + 1 ⋮ n + 2
=> 1 ⋮ n + 2 => n + 2 ∈ Ư(1) = { - 1; 1 }
Với n + 2 = - 1 => n = - 1 - 2 = - 3
Với n + 2 = 1 => n = 1 - 2 = - 1
Vậy n = { - 3; - 1 }
B2 : A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 257 + 258 + 259 + 260 )
= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 257 ( 1 + 2 + 22 + 23 )
= 2.( 1 + 2 + 4 + 8 ) + 25( 1 + 2 + 4 + 8 ) + ... + 257 ( 1 + 2 + 4 + 8 )
= 2.15 + 25 .15 + ... + 257 . 15
= 15(2 + 25 + .... + 257 ) chia hết cho 15
Mà 15chia hết cho 3 => A chia hết cho 15 và 3 ( đpcm )
CM chia hết cho 7 tương tự nhá
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
A=2+2^2+...........+2^60
c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)
=2.3+.........+2^59.3
=(2+...+2^59).3
=>A chia hết cho 3
cau tiếp tuong tu
3
Ta chứng minh A chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2.(1+2)+2^3.(1+2)+...+2^59.(1+2)
=2.3+2^3.3+...+2^59.3
=3.(2+2^3+...+2^59) chia hết cho 3
Ta chứng minh A chia hết cho 7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)
=2.7+2^4.7+...+2^58.7
=7.(2+2^4+...+2^58) chia hết cho 7
Ta chứng minh A chia hết cho 15
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
=2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)
=2.15+2^5.15+..+2^57.15
=15.(2+2^5+...+2^57) chia hết cho 15
Ta có :B = 1 + 3 + 32 + 33 + 34 + 35 + ... + 397 + 398 + 399
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (397 + 398 + 399)
= (1 + 3 + 32) + 33 . (1 + 3 + 32) +...+ 397.(1 + 3 + 32)
= 13 + 33 . 13 + ... + 397.13
= 13.(1 + 33+ ... + 397) \(⋮\)13
Vậy B\(⋮\)13 (đpcm)
Ta có : B = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37+ ... + 396 + 397 + 398 + 399
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + ... + 396.(1 + 3 + 32 + 33)
= 40 + 34 .40 + ... + 396. 40
= 40.(1 + 34 + .. + 396) \(⋮\)40
Vậy B \(⋮\) 40 (đpcm)
a) B=1+3+32+33+...+399
B=(1+3+32)+(33+34+35)+...+(397+398+399)
B=(1+3+32)+33(1+3+32)+...397(1+3+32)
B=13+33.13+...+397.13
B=(1+33+...+97).13
=> b chia hết cho 13
b)B=(1+3+32+33)+...+(396+397+398+399)
B=(1+3+32+33)+34(1+3+32+33)+...+396(1+3+32+33)
B=40+34.40+...+396.40
B=(1+34+...+396).40
=> B hết cho 40
Ok rồi nha:v
B=\(3^1+3^2+3^3+...+3^{300}\)
=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{299}+3^{300}\right)\)
=\(3\left(1+3\right)+3^3\left(1+3\right)+...+3^{299}\left(1+3\right)\)
=\(3.4+3^3.4+...+3^{299}.4\)
=\(\left(3+3^3+...+3^{299}\right).4\)
Vì 4\(⋮\)2 mà trong một tích có 1 ts chia hết cho 2 thì tích đó chia hết cho 2 \(\Rightarrow\)B\(⋮\)2
A = 2 + 22 + ...... + 260
= 2(1+2) +.......+ 260 (1 +2)
= 3( 2 + ....+ 260) nên A chia hết cho 3
A = _________________(Đề)
= 2( 1 +2 + 22) +...+ 258(1 +2 + 22)
= 7(2 + ...258) nên A chia hết cho 7
Bạn làm tương tự các câu khác nha