K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

A=2x(1+2)+22x(1+2)+...+259x(1+2)

A=2x3+22x3+...+259x3

A=(2+22+...+259)x3 chia hết cho 3

A=2x(1+2+22)+...+258x(1+2+22)

A=2x7+...+258x7

A=(2+258)x7chia hết cho 7

A=2x(1+2+22+23)+...+257x(1+2+22+23)

A=2x15+...+257x15

A=(2+257)x15 chia hết cho 15

=>A chia hết cho 3, 7, 15

25 tháng 9 2017

A = 2 + 22 + ...... + 260

   = 2(1+2) +.......+ 260 (1 +2)

   = 3( 2 + ....+ 260) nên A chia hết cho 3

A = _________________(Đề)

   = 2( 1 +2 + 22) +...+ 258(1 +2 + 22)

   = 7(2 + ...258) nên A chia hết cho 7

Bạn làm tương tự các câu khác nha

17 tháng 7 2015

A=2.(1+2)+..........+2^59.(1+2)

A=2.3+.........+2^59.3

A=3.(2+....+2^59) chia hết cho 3

Vậy suy ra A chia hết cho 3

A=2.(1+2+2^2)+........+2^58.(1+2+2^2)

A=2.7+..........+2^58.7

A=7.(2+.....+2^58) chia hết cho 7

Vậy A chia hết cho 7

A=2.(1+2+2^2+2^3)+.........+2^57.(1+2+2^2+2^3)

A=2.15+...........+2^57.15

A=15.(2+2^57) chia hết cho 15

Vậy A chia hết cho 15

9 tháng 8 2016

Đáng nhẽ đê như vầy: 

 A= 2 + 22 + 23 + 2+ ..... + 22015

 => A = (2 + 23) + ( 22 + 24 ) + ..... + ( 22012 + 22014​) + (22013 + 22015)

 <=> A = 2.( 1 + 4 ) + 22. ( 1 + 4) + ...... + 22012.(1 + 4) + 22013.(1 + 4)

=> A = 2.5 + 22. 5 + ...... + 22012.5 + 22013.5

=> A = 5. ( 2 + 22 + 23 + .... + 22013) chai hết cho 5

9 tháng 8 2016

còn 2 và 3 nũa mà

27 tháng 10 2017

a)A=2+2^2+2^3.....+2^60

(2+2^2)+(2^3+2^4)+.....+(2^59+2^60)

2×(1+2)+2^3×(1+2)+....+2^59×(1+2)

2×3+2^3×3+...+2^59×3

vì 3 chia hết cho 3 nên:

2×3+2^3×3+...+2^59×3 chia hết cho 3

2+2^2+2^3+....+2^60

(2+2^2+2^3)+....+(2^58+2^59+2^60)

2×(1+2+2^2)+....+2^58×(1+2+2^2)

2×(1+2+4)+....+2^58×(1+2+4)

2×7+.....+2^58×7

vì 7 chia hết cho 7 nên:

2×7+....+2^58×7 chia hết cho 7

b)B=3+3^2+3^3+.....+3^1991

(3+3^2+3^3)+...+(3^1989+3^1990+3^1991)

3×(1+3+3^2)+....+3^1989×(1+3+3^2)

3×(1+3+9)+....+3^1989×(1+3+9)

3×13+....+3^1989×13

vì 13 chia hết cho 13 nên

3×13+....+3^1989×13 chia hết cho 13

23 tháng 10 2017

a) Vì 11^n =............1 ( bằng 1 số luôn có tận cùng là 1 )

=> 11^9+11^8+11^7+...........+1 = .....1 +........1+........+1 ( có tất cả 9 số 11 và 1 số 1 )

=> A sẽ có tận cùng là 0 ( vì có tất cả 10 số có tận cùng là 1)

=> A chia hết cho 5 ( dựa vào dấu hiệu nhận biết 1 số chia hết cho 5 )

b) B=2+2^2+.......+2^60

       =( 2+2^2)+(2^3+2^4)+........+(2^59+2^60)

       = 2x(1+2)+2^3+(1+2)+.......+2^59x(1+2)

        = 2x3+2^3x3+............+2^59x3

       =  3x ( 2 + 2^3 + ...........+ 2^59 )

=>B chia hết cho 3

Can you do next post ?

23 tháng 10 2017

a,64 b,62

14 tháng 11 2017

A= ( 2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +........+ ( 2 mũ 59 + 2 mũ 60)

A= 6 + 2 mũ 2 ( 2 mũ 1 + 2 mũ 2)........+ 2 mũ 58 ( 2 mũ 1 + 2 mũ 2)

A= 6 + 2 mũ 2 . 6 + ....... + 2 mũ 58 . 6

Suy ra ĐPCM

A chia hết 7 ( tương tự) 

A chia hết 24 

Đầu tiên cm nó chia hết cho 3 ( như trên) Rồi CM chia hết cho 8

Vì (3,8)=1

Ta CM A chia hết 8 ( thay típ)

Nếu k hỉu nữa thì qua trang toanh7.edu.vn để hỏi nhé !

Ng ta hỏi là Tên đăng nhập thì bảo là : nguyentiendat88

29 tháng 11 2016

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

29 tháng 11 2016

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)

26 tháng 7 2017

b) A=(2+22+23)+(24+25+26)+...+(258+259+260)

=>A=2(1+2+22)+24(1+2+22)+...+258(1+2+22)

=>A=7(2+24+...+258)\(⋮\)7

a) Nhóm 2 số vào 1 nhóm rồi giải như trên.

c) Nhóm 4 số vào 1 nhóm rồi giải như trên.