K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2022

chưa ai giúp bạn sao : olm tới rồi!

C = \(\overline{44444.......44}\)  (n chữ số 4)

C = 4. \(\overline{11111.....111}\) ( chữ số 1)

giả sử C là một số chính phương thì 

⇔ 4. \(\overline{1111.......111}\) là một số chính phương 

vì 4 là một số chính phương nên 

⇔ \(\overline{11111.....111}\) là một số chính phương 

một số chính phương có tận cùng là 1 thì chữ số hàng chục phải là chữ số chẵn. mà \(\overline{1111.....111}\) lại có chữ số hàng chục là chữ số lẻ nên \(\overline{111....111}\) là một số chính phương là sai . dẫn đến điều giả sử là sai .

vậy C = \(\overline{44444...444}\) không phải là một số chính phương (đpcm)

 

 

TD
9 tháng 11 2022

lấy n = 2, ta thấy 44 không phải là số chính phương.

16 tháng 8 2019

n thuộc N nữa nha!

Đặt 11...1(n chữ số 1)=a

Thì 9a+1=10n

\(\Rightarrow M=...\)

          \(=a.\left(9a+1\right)+a+4a+1\)

           \(=9a^2+6a+1=\left(3a+1\right)^2\)

26 tháng 1 2016

Co ai giup minh ko chang le newbie ko dc giup sao

20 tháng 8 2017

\(A=444....444=4.111.....111=4.\frac{10^{2n}-1}{9}\)

\(B=888.....888=8.111.....111=8.\frac{10^n-1}{9}\)

\(\Rightarrow A+2B+4=\frac{4.10^{2n}-4+16.10^n-16+36}{9}=\frac{4.10^{2n}+16.10^n+16}{9}=\left(\frac{2.10^n+4}{3}\right)^2\)

là số hính phương (đpcm)

20 tháng 8 2017

2) Ta có :

\(x^4+6x^2+25=x^4+10x^2+25-4x^2=\left(x^2+5\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)(1)

\(3x^4+4x^2+28x+5=\left(3x^4+6x^3+x^2\right)+\left(-6x^3-12x^2-2x\right)+\left(15x^2+30x+5\right)\)

\(=x^2\left(3x^2+6x+1\right)-2x\left(3x^2+6x+1\right)+5\left(3x^2+6x+1\right)\)

\(=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)(2)

Từ (1) ; (2) \(\Rightarrow f\left(x\right)=x^2-2x+5\Rightarrow f\left(2011\right)=2011^2-2.2011+5=4040104\)

6 tháng 8 2018

A = 111...1000...0 + 111...1 - 222...2

     (n cs 1)(n cs 0)   (n cs 1)  (n cs 2)

\(A=111...1\cdot10^n+111...1-222...2\)

        (n cs 1)                       ( n cs 1 )      ( n cs 2 )

Đặt   K = 111...1  ( n cs 1 )   => 9K + 1 = 10^n

=> A = K( 9k + 1 ) + K - 2K

        = 9K^2 + K + K - 2K

        = 9K^2   = (3K)^2     

=> A là một số chính phương

B = 111...1000...0 + 111...1 +  444...4 + 1

    (n cs 1)(n cs 0)   (n cs 1)    (n cs 4)

\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)

                ( n cs 1 )                 ( n cs 1 )         ( n cs 4 )

Đặt   K = 111...1   ( n cs 1 )         => 9K + 1 = 10^n

=> B = K( 9K + 1 ) + K + 4K + 1

         = 9K^2 + 6K + 1

         = ( 3K + 1 ) ^2

=> B là một số chính phương

19 tháng 8 2023

Ta có \(A=\overset{2n}{11...1}+\overset{n}{44...4}+1\)

\(A=\dfrac{1}{9}.\overset{2n}{99...9}+\dfrac{4}{9}.\overset{n}{99...9}+1\)

\(A=\dfrac{1}{9}\left(10^{2n}-1\right)+\dfrac{4}{9}\left(10^n-1\right)+1\)

\(A=\dfrac{10^{2n}-1+4.10^n-4+9}{9}\)

\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)

\(A=\left(\dfrac{10^n+2}{3}\right)^2\) 

 Dễ thấy \(10^n+2⋮3\) vì có tổng các chữ số là 3 nên \(\dfrac{10^n+2}{3}\inℕ^∗\). Vậy A là số chính phương (đpcm)