K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)

hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)

 

7 tháng 10 2018

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\) và \(c=dk\)

thay vào biểu thức

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\) (1)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\) (2)

Từ 1 và 2 suy ra đpcm

câu b tương tự bạn thay a=bk và c=dk rồi rút gọn như câu a là xong nha!

11 tháng 8 2016

a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Leftrightarrow\frac{5bk+3b}{5bk-3b}=\frac{5dk+3d}{5dk-3d}\)

Xét VT \(\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

Xét VP \(\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) -->Đpcm

b)Đặt tương tự ta xét VT

\(\frac{7\left(bk\right)^2+3bk\cdot b}{11\left(bk\right)^2-8b^2}=\frac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(1\right)\)

Xét VP \(\frac{7\left(dk\right)^2+3dk\cdot d}{11\left(dk\right)^2-8d^2}=\frac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(2\right)\)

Từ (1) và (2) -->Đpcm

11 tháng 8 2016

ờ đề hoj j nx

23 tháng 11 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a, Thay vào bt

\(VT=\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)

\(VP=\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)

\(\Rightarrow VT=VP\)

hay  \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)

b, thay vào bt

\(VT=\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\frac{b^2k\left(7k+3\right)}{b^2\left(11k^2-8\right)}=\frac{k\left(7k+3\right)}{11k^2-8}\)

\(VP=\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\frac{d^2k\left(7k+3\right)}{d^2\left(11k^2-8\right)}=\frac{k\left(7k+3\right)}{11k^2-8}\)

\(\Rightarrow VP=VT\)

hay  \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)

2 tháng 10 2020

Bài 1:

a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)

\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)

\(\Leftrightarrow5-5x=8\)

\(\Leftrightarrow x=-\frac{3}{5}\)

b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)

\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)

2 tháng 10 2020

Bài 1:

c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)