Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)
Do đó: \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
b: \(\dfrac{7a^2+8ab}{11a^2-8b^2}=\dfrac{7b^2k^2+8\cdot bk\cdot b}{11\cdot b^2\cdot k^2-8b^2}=\dfrac{7k^2+8k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+8\cdot dk\cdot d}{11\cdot d^2\cdot k^2-8d^2}=\dfrac{7k^2+8k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+8ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a) thay \(a=bk;c=dk\) ta có
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(1)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(2)
từ (1);(2)\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
b) thay \(a=bk;c=dk\) ta có
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7(bk)^2+3bkb}{11(bk)^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}\)
\(=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)(3)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3dkd}{11\left(dk\right)^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}\)
\(=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)(4)
từ (3);(4)\(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
a)Đặt \(\dfrac{a}{b}=\dfrac{c}{b}=k\left(k\ne0\right)\)
=> a=bk; c=dk
+) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)
+) \(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
b) cũng đặt và cm tương tự
Mk chỉ làm 1 câu thôi mấy câu sau tương tự theo cách đó nhoa:v
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^4=\dfrac{b^4}{d^4}\)
\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{bk^4+b^4}{dk^4+d^4}=\dfrac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\dfrac{b^4}{d^4}\)
\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\Rightarrowđpcm\)
Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^4}{c^4}\)=\(\dfrac{b^4}{d^4}\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^4\)(2)
Từ (1) và (2)suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^4\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(đpcm)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a+3b}{5c+3d}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5b}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)=\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Do đó: \(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{a}{c}\right)^2\)và \(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{b}{d}\right)^2\)
=>\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\) và \(\dfrac{ab}{cd}\)=\(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{7a^2}{7c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{3ab}{3cd}\)=\(\dfrac{7a^2+3ab}{7c^2+3cd}\)(1)
Ta có: \(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=> \(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{7a^2+3ab}{7c^2+3cd}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)=\(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)
a) Từ (*) ta có:
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\) (1)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\) (2)
Từ (1) và (2) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
b) Từ (*) ta có:
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\) (3)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\) (4)
Từ (3) và (4) suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
P/s: test lại đề phần b), mẫu số của vế trái
a, Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Vì \(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}\)\(=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)
Vậy \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+5d}{5c-5d}\)
đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk\) và \(c=dk\)
thay vào biểu thức
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\) (1)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\) (2)
Từ 1 và 2 suy ra đpcm
câu b tương tự bạn thay a=bk và c=dk rồi rút gọn như câu a là xong nha!
từ \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=k=>\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
ta có:\(\dfrac{5a+3b}{7a-2b}=\dfrac{5.ck+3.dk}{7.ck-2.dk}=\dfrac{k.\left(5c+3d\right)}{k.\left(7c-2d\right)}=\dfrac{5c+3d}{7c-2d}\)Vậy \(\dfrac{5a+3b}{7a-2b}=\dfrac{5c+3d}{7c-2d}\left(đpcm\right)\)
b) từ \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=k=>\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
ta có:\(\dfrac{7a^2+3ab}{11a^2+8.b^2}=\dfrac{7.c^2.k^2+3.c.d.k^2}{11.c^2.k^2+8.d^2.k^2}=\dfrac{k^2.\left(7.c^2+3.c.d\right)}{k^{2.}\left(11.c^2+8.d^2\right)}\) vậy .......
c)\(từ\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
=>\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\dfrac{a+b}{c+d}\right)^2\)(1)
Mặt khác:\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1).(2)=>......
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Leftrightarrow\frac{5bk+3b}{5bk-3b}=\frac{5dk+3d}{5dk-3d}\)
Xét VT \(\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
Xét VP \(\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) -->Đpcm
b)Đặt tương tự ta xét VT
\(\frac{7\left(bk\right)^2+3bk\cdot b}{11\left(bk\right)^2-8b^2}=\frac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(1\right)\)
Xét VP \(\frac{7\left(dk\right)^2+3dk\cdot d}{11\left(dk\right)^2-8d^2}=\frac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(2\right)\)
Từ (1) và (2) -->Đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Thay vào bt
\(VT=\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)
\(VP=\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)
\(\Rightarrow VT=VP\)
hay \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)
b, thay vào bt
\(VT=\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\frac{b^2k\left(7k+3\right)}{b^2\left(11k^2-8\right)}=\frac{k\left(7k+3\right)}{11k^2-8}\)
\(VP=\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\frac{d^2k\left(7k+3\right)}{d^2\left(11k^2-8\right)}=\frac{k\left(7k+3\right)}{11k^2-8}\)
\(\Rightarrow VP=VT\)
hay \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)
hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)