K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

A=(p−2)!−1B=(p−2)!−1

    Do (p−1,p)=1(p−1,p)=1 nên ta chứng minh  (p−1).A=(p−1)!−(p−1)(p−1).A=(p−1)!−(p−1) chia hết cho pp  (đúng theo định lí wilson)

 Tham khảo cách chứng minh định lí này tại đây , đây , hoặc đây

21 tháng 10 2018

Một số nguyên tố lớn hơn 3 khi chia cho 3 sẽ có 2 khả năng xảy ra 

p = 3k + 1 ; p = 3k + 2 ;

Với p = 3k + 1

=> (p + 1)(p - 1) = p2-1=(3k+1)2-1=9k2+6k=3k(3k+2)

Vì đây là tích 2 số tự nhiên liên tiếp => chia hết cho 2 , 3 => (p-1)(p+1) chia hết cho 6

C/m tương tự để chia hết cho 24

Với p = 3k + 2

tương tự

11 tháng 1 2018

nếu n nguyên tố thì từ 1 đến n-1 ko có số nào chia hết cho n => n-1! sẽ ko chia hết cho n vô lí vậy n ko là số nguyên tố

11 tháng 11 2019

Bài này dễ thôi bạn !!!

Xét mọi p nguyên tố lẻ và p > 3=> p^2:3 dư 1 do 1 SCP : 3 dư 0 hoặc 1 và SCP đó không chia hết 3 do là SNT>3

=> 8p^2+1 chia hết cho 3 và > 3 do p > 3 => Là hợp số => Vô lí => Loại

Xét p=3 => 8p^2+2p+1=79 là SNT và 8p^2+1=73 là SNT lẻ (TMĐK)

=> ĐPCM.

1 tháng 2 2018

a) 4x2+4x-y2=-1

=>y2=4x2+4x+1

4x2+4x-y2=-1

=>4x2+4x-y2=-1

        x              x

<=> 4x+4-y2/x=-1/x

thay y2

=>4x+4-(4x2+4x+1)/x=-1/x

4x+4-4x+4+1/x=-1/x

8+1/x=-1/x

(8x+1)/x=-1/x

=>8x+1=-1<=>x=-1/4 từ đó thay x tìm y

mình mới lớp 7 nên chưa chắc làm đung đâu nhé!


 

21 tháng 10 2016

b) A=m3+3m2-m-3

=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)

=(m-1)(m2+m+1+m+2m+2)

=(m-1)(m2+4m+4-1)

=(m-1)[ (m+2)2-1 ]

=(m-1)(m+1)(m+3)

với m là số nguyên lẻ

=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)

    m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)

    m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)

ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)

A=(2k-2)2k(2k+2)

=(4k2-4)2k

=8k(k-1)(k+1)

k-1 ;'k và k+1 là 3 số nguyên liên tiếp

=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3

=> tích (k-1)k(k+1) luôn chia hết cho 6

=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48

=> (m3+3m3-m-3) chia hết cho 48(đfcm)

21 tháng 10 2016

ở lớp 8 ta có chứng minh rằng 3 số tự nhiên liên tiếp luôn chia hết cho 6 rồi đó ở trong sbt toán 8

6 tháng 11 2017

Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:

\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Ta thấy 34 = 52 + 32 nên ta có bảng:

2x-15-53-3
x3-22-1
2y-15-53-3
y3-32-1

Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)

7 tháng 11 2017

Xét \(x^2+\frac{1}{x^2}\)=\(\left(x+\frac{1}{x}\right)^2-2\in Z\).Giả sử đúng đến n=k , ta sẽ c/m n đúng đến k+1.

Điều này là hiển nhiên vì \(x^{k+1}+\frac{1}{x^{k+1}}=\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)-x^{k-1}-\frac{1}{x^{k-1}}\in Z\)