K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

\(\Delta_1=b^2-4;\Delta_2=1-4c;\)

Do đó: \(\Delta_1+\Delta_2=b^2-3c-4c\)

Mặt khác, ta có: \(b-2c\ge2\Leftrightarrow-2c\ge2-b\Leftrightarrow-4c\ge4-2b\Leftrightarrow-3-4c\ge1-2b\)

\(\Leftrightarrow b^2-3-4c\ge b^2-2b+1=\left(b-1\right)^2\ge0\)

Hay \(\Delta_1+\Delta_2\ge0\)

Suy ra ít nhất một trong hai biệt thức \(\Delta_1,\Delta_2\)phải có ít nhất một biệt thức không âm.

Hay một trong hai phương trình đã cho có nghiệm.

29 tháng 8 2020

x2+ax+1=0

Δ1=a²−4

x2+bx+1=0

Δ2=b²−4

Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2

→ Hoặc Δ1=a²−4≥0

→ Hoặc Δ2=b²≥0

30 tháng 3 2018

tham khảo:https://www.vatgia.com/hoidap/5272/114204/toan-kho-lop-9-day--help.html

30 tháng 3 2018

ta có : ax=-(x^2+1) 
bx=-(x^2+1) 
abx=-(x^2+1) 
=>ax=bx=abx 
nếu x<>0 thi a=b=ab 
=> a=b=1 => 4/(ab)^2 -1/a^2-1/b^2=2 
nếu x=0 thi a=b=-1 
thì 4/(ab)^2 -1/a^2-1/b^2=2 
vậy 4/(ab)^2 -1/a^2-1/b^2=2

17 tháng 11 2017

Các giải của các bài toán này là sử dụng tổng các delta em nhé

1 tháng 7 2020

Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)

Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)

Hay \(\Delta>\left(a-c\right)^2\ge0\)

Vậy ta có điều phải chứng mình 

3 tháng 7 2020

b > a + c thì chưa đủ điều kiện chứng minh b^2 > (a + c)^2 mà?

7 tháng 7 2018

3700 hoặc 3699

7 tháng 7 2018

đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.

@nguyenthanhtuan cái này là chứng minh mà bạn.