Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow ay-bx=0\)
( Bất đẳng thức Bu - nhi - a - cốp - xki )
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(=\left(a^2x^2-2axby+b^2y^2\right)+\left(a^2y^2+2axby+b^2x^2\right)\)
\(=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
Cái này trong SGK nè
BĐVT ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)(1)
BĐVP ta có:
\(\left(ax-by\right)^2+\left(ay+bx\right)^2=a^2x^2+a^2y^2-2abxy+2abxy+b^2x^2+b^2y^2=a^2x^2+a^2y^2+b^2x^2+b^2y^2\left(2\right)\)
Từ (1) và (2) suy ra:( a2 + b2 ).( x2 + y2) = ( ax - by)2 + ( ay + bx)2
Ta có : (a^2 + b^2)(x^2 + y^2) = (ax + by)^2
=> a^2x^2 + a^2y^2 +B^2x^2 + b^2y^2 = a^2x^2 + b^2y^2 + 2axby
=> chuyển vế trái sang phải: a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 - a^2x^2 - b^2y^2 - 2axby = 0
=> a^2y^2 + b^2x^2 - 2axby = 0
=> (ax - by)^2 = 0
Chỉ khi ax = by thì (ax - by)^2 = 0 => ax = by.
a)
\(A=-\left(a-b^2\right)+b\)
\(=>2X\left(x^2+b\right)\)
Chứng minh
A=min a2 + b =........
Câu b tương tự
a) \(2.\left(a^2+b^2\right)=\left(a+b\right)^2\Leftrightarrow2.\left(a^2+b^2\right)-\left(a+b\right)^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a-b=0\Leftrightarrow a=b\)
Đây là bất đẳng thức Bunhia Cốpxki bạn, lên mạng tra cách giải là đc!
Cái này có 2 cách : biến dổi tương đương và áp dụng bất đẳng thức Bu-ni-a
Biến đổi tương đương : \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
Chuyển vế phải qua vế trái rút gọn lại ta được : \(a^2y^2-2axby+b^2x^2=0\)
=>\(\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\Rightarrow ay=bx\Rightarrow\frac{a}{x}=\frac{b}{y}\)
a) ta có 4p(p-a)=2(a+b+c){(a+b+c)/2}=(a+b+c)(a+b+c)=b2+2bc+c2+a2(đpcm)