K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2023

CM: A = n2 + n ⋮ 2 \(\forall\) n \(\in\) N

        A = n2 + n

       A = n(n +1)

Vì n và n + 1 là hai số tự nhiên liên tiếp nên nhất định sẽ có một số chẵn, một số lẻ. mà số chẵn thì luôn chia hết cho 2

Vậy A = n(n+1) ⋮ 2 ∀ n \(\in\) N hay A = n2 + n ⋮ 2 \(\forall\) n \(\in\) N (đpcm)

 

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

16 tháng 2 2022

b) ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)

29 tháng 9 2019

Nếu n chia hết cho 3 thì hiển nhiên đúng

Nếu n k chia hết cho 3 thì n sẽ có 2 dạng là:(x là số nguyên)

n=3x+1 hoặc n=3x+2

n=3x+1 thay vào biểu thức ta được: (3x+1)(6x+3)(3x-1)=3(3x+1)(2x+1)(3x-1) chia hết cho 3

n=3x+2 thay vào:(3x+2)(6x+5)3x chia hết cho 3

Kết luận: với mọi n biểu thức luôn chia hết cho 3

24 tháng 7 2019

Ta có : n.(n+1).(n+2) là 3 số tự nhiên liên tiếp

Mà tích 3 STN liên tiếp luôn chia hết cho 6

Nên n.(n+1).(n+2) luôn luôn chia hết cho 6

28 tháng 1 2015

a. Giả sự n chia hết cho 2 => n+6 chia hết cho 2 => A chia hết cho 2

   Giả sư n ko chia hết cho 2 => n + 7 chia hết cho 2 => A chia hết cho 2

 

b. Giả sử n chia hết cho 2 => n^2 chia hết cho 2 => n^2 + n chia hết cho 2 => B ko chia hết cho 2

   Gia sử n ko chia hết cho 2 => n^2 ko chia hết cho 2. => n^2 + n chia hết cho 2 => B ko chia hết cho 2

27 tháng 10 2014

A = 5n(n+3)

- Với x = 0 thì A = 0 chia hết cho 2

- Với n là số chẵn: n = 2k => A = 5.2.k.(2k+3) chia hết cho 2

- Với n là số lẻ:  n = 2k+1 => A = 5.(2k+1)(2k+1+3) = 5.2.(2k+1)(k+2) chia hết cho 2

Vậy với mọi số tự nhiên n thì A đều chia hết cho 2

27 tháng 1 2018

Câu a)

Ta có: \(n\left(n+1\right)=n^2+n\)

TH1: Khi n là số chẵn 

Khi n là số chẵn thì \(n^2\)cũng là số chẵn

Suy ra \(n^2+n\)chia hết cho 2

TH2: khi n là số lẻ

Khi n là số lẻ thì \(n^2\)cũng là số lẻ

Suy ra \(n^2+n\)chia hết cho 2

Vậy .................

Cấu dưới tương tự

Làm biếng :3