Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
các cậu xét số chính phương chia 3 dư 0 hoặc 1 và số chính phương chia 8 dư 0; 1 hoặc 4
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
=> n \(⋮\) 4
=> n chẵn
=> n+1 cũng là số lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
=> n \(⋮\) 8
Mặt khác :
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 là các số chính phương lẻ
\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)
Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1
=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)
=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1
=> n=4b(b+1) =>n \(⋮\)8 (1)
Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)
Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1
Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)
m\(^2\) = 1 (mod3)
=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3
Mà (8;3)=1
Từ (1) ; (2) và (3) => n \(⋮\) 24
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)
Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24