K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

tíc mình rồi mình giải cho

vì số chính phương  chia cho a luôn dư a mủ 2 

15 tháng 1 2015

Ta có: 3x-4y 

          = x-6y+6y-+4y

          = 3.(x+2y)-10y

Mà: 10 chia hết cho 5 => 10y chia hết cho 5

       3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)

Ta có: x+2y

          =x+2y+5x-10y-5x+10y

          = 6x-8y-5.(x+2y)

Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5

      2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)

Từ (1) và (2) => x+2y <=> 3x -4y

Vậy ; x+2y <=> 3x-4y

 

5 tháng 10 2015

ban gioi wa.cam on

 

5 tháng 3 2018

a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1

Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.

Vậy n chia 8 dư 1.

b) Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

8 tháng 1 2018

Vì số chính phương khi chia hết cho 1 số nguyên tố thì phải chia hết cho bình phương của số đó.

Trường hợp cuối chưa hắc phải chia hết cho 16 mới là số chính phương vì :

Chia hết cho 8 -> Chia hết cho 2 và 4 ( TH đầu tiên )

8 tháng 1 2018

vì 4 chia hết cho 2

vì 9 chia hết cho 3

vì 25 chia hết cho 5

vì 16 chia hết cho 8

9 tháng 12 2015

CHTT

Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.

Ta có: (3x)2 = 9x2 chia hết cho 3

           (3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1

           (3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1

Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.

9 tháng 12 2015

Sao các bạn trả lời giống nhau vậy!

30 tháng 5 2017

uh cảm ơn dã nhắc mk nhá

30 tháng 5 2017

19 phút đã thôi qua nhưng không ai đưa ra đáp án . Vì thế mình sẽ công bố luôn:

Đáp án:

Chứng minh. Xét \(a^2\)là một số chính phương, với \(a\in Z\)

a) Số nguyên a chia hết cho 3 hoặc khi chia 3 dư 1 hoặc 2.

 Nếu \(a\)\(⋮\)3 thì \(a^2\)\(⋮\)3

Nếu a chia cho 3 dư 1 hoặc 2 thì (a - 1) \(⋮\) 3 hoặc (a + 1) \(⋮\) 3. Suy ra (a - 1)(a + 1) \(⋮\)3 hay (\(a^2\)- 1) \(⋮\) 3.

b) Nếu a \(⋮\) 2 thì \(a^2\) \(⋮\) 4.

Nếu a không chia hết cho 2 thì (a - 1) \(⋮\) 2. Suy ra (a - 1) (a + 1) \(⋮\) 4 hay ( \(a^2\) -  1) \(⋮\)4.

Do đó \(a^2\) chia 4 dư 1 (ĐPCM)