\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2015

Viết: 

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{8}+...+\frac{1}{n}=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\frac{1}{n}\)

Nhận xét: \(\frac{1}{3}+\frac{1}{2^2}>\frac{1}{2^2}.2\)

               \(\frac{1}{5}+...+\frac{1}{2^3}>\frac{1}{2^3}+...+\frac{1}{2^3}=\frac{1}{2^3}.2^2\)

               \(\frac{1}{9}+...+\frac{1}{2^4}>\frac{1}{2^4}+...+\frac{1}{2^4}=\frac{1}{2^4}.2^3\)

....

Tiếp tục như vậy, ta được Vế trái > \(1+\frac{1}{2}+\frac{1}{2^2}.2^1+\frac{1}{2^3}.2^2+\frac{1}{2^4}.2^3+...+\frac{1}{2^k}.2^{k-1}+....=1+\frac{1}{2}.k+...\)

Để vế trái > 1000 =>  k > 1998 => ta có thể chọn k = 1999

Khi đó ,có thể  chọn n = 2k = 21999

Vậy luôn tồn tại số tự nhiên n thỏa mãn yc

12 tháng 10 2016

bạn bạn trả lời hay wa!!!!!!!! thanks nha!!!!!!!!!!!!!!!!!!!

15 tháng 5 2015

Ta chọn n=21999

Ta có:1+1/2+1/3+...+1/n=1+1/2+(1/3+1/22)+(1/5+1/6+1/7+1/2^3)+(1/9+...+1/2^4)+...+(1/2199​8+1+...+1/21999)>1+1/2+1/22.2+1/23.22+1/24.23+...+1/21999.21998=1+1/2.1999=1000,5>1000(đpcm)

15 tháng 5 2015

Ta chọn n=2^1999

Ta có:1+1/2+1/3+...+1/n=1+1/2+(1/3+1/22)+(1/5+1/6+1/7+1/2^3)+(1/9+...+1/2^4)+...+(1/2199​8+1+...+1/21999)>1+1/2+1/22.2+1/23.22+1/24.23+...+1/21999.21998=1+1/2.1999=1000,5>1000(đpcm)

7 tháng 2 2018

Số đó là 2^1999

29 tháng 4 2015

bạn này là con trai .....................

28 tháng 4 2015

là con gái hay con trai vậy ? nhìn cái tên thì chẳng ai phân biệt được trai hay gái đâu.