Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(a^3+b^3-2808^{2017}=2c^3-16d^3\)
\(\Rightarrow a^3+b^3+16d^3-2c^3=2808^{2017}⋮3\)
\(\Rightarrow a^3+b^3+d^3+c^3+15d^3-3c^3⋮3\)
\(\Leftrightarrow\left(a^3+b^3+c^3+d^3\right)+3\left(5d^3-c^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)
Xét:\(k^3-k\left(k\in Z\right)=k\left(k^2-1\right)=\left(k-1\right)k\left(k+1\right)\)
Mà: \(k-1;k;k+1\)là 3 số nguyên liên tiếp
\(\Rightarrow k^3-k⋮3\Rightarrow\left(a^3-a+b^3-b+c^3-c+d^3-d⋮3\right)\)
\(\Rightarrow a+b+c+d⋮3\left(vì:a^3+b^3+c^3+d^3⋮3\right)\)
Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\) ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)
\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)
\(a^3+11a=a\left(a^2+11\right)\)
Nếu \(a=3k+1\Rightarrow a^2+11=9k^2+6k+12⋮3\)
Nếu \(a=3k+2\Rightarrow a^2+11=9k^2+12k+15⋮3\)
\(\Rightarrow\left(a^3+11a\right)⋮3\) \(\forall a\in Z\) (1)
Mặt khác ta có:
\(2017\equiv1\left(mod3\right)\Rightarrow2017^{2017}\equiv1\left(mod3\right)\)
\(\Rightarrow\left(2017^{2017}+1\right)\equiv2\left(mod3\right)\)
\(\Rightarrow\left(2017^{2017}+1\right)⋮̸3\) (2)
Từ (1), (2) \(\Rightarrow\left(2017^{2017}+1\right)⋮̸\left(a^3+11a\right)\) \(\forall a\in Z\)