Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy câu trên dễ
\(M=4a^2-6a+12\)
\(M=\left(2a\right)^2-2\cdot2a\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{39}{4}\)
\(M=\left(2a-\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\forall x\left(đpcm\right)\)
1. a) 2x2y - 3xy2 - 6x + 9y = 2x( xy - 3 ) - 3y ( xy - 3) = ( 2x - 3y)(xy - 3)
b) x2 - 2x + 8 = x2 - 2x + 12 - 1 + 9 = ( x - 1 )2 + 32 ( xem lại đề bài )
2. a) ( 2x - 1) 2 - (2x-1)(2x+3) = 5
(2x-1)(2x-1-2x-3) = 5
-4(2x-1) = 5
2x - 1 = -1,25
2x = -0,25
x= -0,125
b) x(x-9 ) = 0
x= 0 hoặc x = 9
c, ko hiểu
3, M = (2a)2 - 2.2a.1,5 + ( 1,5)2 + 9,75
M= ( 2a - 1,5)2 + 9,75
Vì ( 2a - 1,5 )2 \(\ge\)0 \(\forall x\)
\(\Rightarrow\)( 2a - 1,5)2 + 9,75 \(\ge9,75\forall x\)
Vậy biểu thức trên luôn dương
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
Bài 2:
a) \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
b) \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)
c) \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề
còn mấy câu nữa bn đăng lại nhé
a) Ta có: \(x^2-x-6\)
\(=x^2-x-9+3\)
\(=\left(x^2-9\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) Sử dụng phương pháp Hệ số bất định
a) 2x3 + 8x2 - 8x
= 2x(x2 + 4x - 4)
= 2x(x2 + 4x + 4 - 8)
= 2x[(x + 2)2 - 8]
= \(2x\left(x+2-\sqrt{8}\right)\left(x+2+\sqrt{8}\right)\)
b) a2 - b2 + 4a + 4b
= (a - b)(a + b) + 4(a + b)
= (a + b)(a - b + 4)
c) x2 - 2x - 3
= x2 + x - 3x - 3
= x(x + 1) - 3(x + 1)
= (x + 1)(x - 3)
d) x2 - 4x - 3
= x2 - 4x + 4 - 7
= (x + 2)2 - 7
= \(\left(x+2-\sqrt{7}\right)\left(x+2+\sqrt{7}\right)\)
1) bạn ktra lại đề
2) \(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
3)
a) \(x^2+x-2=0\)
<=> \(\left(x-1\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy...
b) \(3x^2+5x-8=0\)
<=> \(\left(x-1\right)\left(3x+8\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)
Vậy...
a) x3 + y3 - 3xy + 1
= ( x + y )3 - 3xy( x + y ) - 3xy + 1
= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]
= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )
= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )
b) ( 4 - x )5 + ( x - 2 )5 - 32
= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32
Đặt t = x - 3
đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )
= 10t4 + 20t2 - 30
Đặt y = t2
đthức = 10y2 + 20y - 30
= 10y2 - 10y + 30y - 30
= 10y( y - 1 ) + 30( y - 1 )
= 10( y - 1 )( y + 3 )
= 10( t2 - 1 )( t2 + 3 )
= 10( t - 1 )( t + 1 )( t2 + 3 )
= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]
= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )
a,\(x^3+y^3-3xy+1\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)
\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)
\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)