Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a)Tìm giá trị nhỏ nhất của biểu thức
A = 2x2 - 4x + 8
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\sqrt{2}+\left(\sqrt{2}\right)^2+4\)
\(=\left(\sqrt{2}x+\sqrt{2}\right)^2+4\)
Ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\) \(\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+4\ge4>0\)
=> A > 4
=> Amin = 4 \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\sqrt{2}x+\sqrt{2}=0\)
\(\Leftrightarrow x=-1\)
Bài 1:
a) \(A=2x^2-4x+8\)
\(=2\left(x^2-2x+4\right)=2\left(x-2\right)^2\)
Xét \(2\left(x-2\right)^2\ge0\)
\(\Rightarrow Min_A=0\Leftrightarrow x=2\)
b) \(B=n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left[\left(n^2-4\right)\left(n^2-1\right)\right]\)
\(=n\left[\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Xét \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là 5 số nguyên liên tiếp
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮30\)
Lời giải:
Đặt \((x+y)^2=a; (x-y)^2=b\)
\(\Rightarrow a+b=2(x^2+y^2)\)
Khi đó:
\((x+y)^6+(x-y)^6=a^3+b^3=(a+b)(a^2-ab+b^2)=2(x^2+y^2)(a^2-ab+b^2)\vdots x^2+y^2\)
Ta có đpcm.
1) bạn ktra lại đề
2) \(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
3)
a) \(x^2+x-2=0\)
<=> \(\left(x-1\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy...
b) \(3x^2+5x-8=0\)
<=> \(\left(x-1\right)\left(3x+8\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)
Vậy...
Tacó : A = n4 ( n4 +4n3 +6n2 +4n + 1 )
= n4 ( n4 + n3+ 3n3 + 3n2 +3n2 + 3n + n +1)
= n4 ( n + 1 )(n3 +3n2 + 3n + 1 ) = n4 ( n+1 ) (n+1)3
= n4 ( n + 1 )4 = [ n(n +1)]4
Vì n( n+1) là tích 2 số nguyên liên tiếp nên có một thừa số chia hết cho 2.
Do đó : A = [n ( n + 1 )]4 chia hết cho 24 =16 . Vậy : A chia hết cho 16
Ta có : n2 + 4n + 6 = (n2 + 2.n.2 + 4) + 2 = (n2 + 2.n.2 + 22) + 2 = (n + 2)2 + 2
Mà (n + 2)2 \(\ge0\forall x\in R\)
Nên (n + 2)2 + 2 \(\ge2\forall x\in R\)
Do đó : (n + 2)2 + 2 \(\ne0\)
Vậy đa thức n2 + 4n + 6 vô nhiệm
n^2+4n+4+2 = (n+2)^2 +2 >0
=> Phương trình sắp có nghiệm :v