Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left\{{}\begin{matrix}m\ne1\\\Delta'=0-\left(m-1\right)\left(-2m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(m-1\right)\left(2m-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\)
b/ \(\Delta=\left(2m+1\right)^2-8m>0\)
\(\Leftrightarrow\left(2m-1\right)^2>0\Rightarrow m\ne\frac{1}{2}\)
c/ \(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Rightarrow m\ne2\)
a) \(3x^2-11x+8=0\)
(\(a=3\) ; \(b=-11\) ; \(c=8\) )
Ta có: \(a+b+c=3-1+8=0\)
\(\Rightarrow\) Pt \(3x^2-11x+8=0\) có 2 nghiệm:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{8}{3}\approx2,6\)
b) \(5x^2+24x+19=0\)
(\(a=5\) ; \(b=24\) ; \(c=19\) )
Ta có: \(a-b+c=5-24+19=0\)
\(\Rightarrow\) Pt \(5x^2+24x+19=0\) có 2 nghiệm:
\(x_1=-1;x_2=-\dfrac{c}{a}=-\dfrac{19}{5}\approx-3,8\)
c) \(x^2-\left(m+5\right)x+m+4=0\)
(\(a=1\) ; \(b=-\left(m+5\right)\) ; \(c=m+4\) )
Ta có: \(a+b+c=1-m-5+m+4=0\)
\(\Rightarrow\) Pt \(x^2-\left(m+5\right)x+m+4=0\) có 2 nghiệm:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\)
Áp dụng: a+b+c = 0 ⇒ x1 = 1; x2 = \(\dfrac{c}{a}\)
a-b+c = 0 ⇒ x1 = -1; x2 = \(\dfrac{-c}{a}\)
a) Có : a+b+c = 3 - 11 + 8 = 0 ⇒ \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{c}{a}=\dfrac{8}{3}\end{matrix}\right.\)
b) a-b+c = 5 - 24 + 19 = 0 ⇒ \(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{-c}{a}=\dfrac{-19}{5}\end{matrix}\right.\)
c) a+b+c = 1-m-5+m+4 = 0 ⇒\(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{c}{a}=m+4\end{matrix}\right.\)
d) a-b+c= m-2m-1+m+1 = 0 ⇒\(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{-c}{a}=\dfrac{-m-1}{m}\end{matrix}\right.\)
c/ \(\Delta'=m^2-5\left(-2m+15\right)=0\)
\(\Leftrightarrow m^2+10m-75=0\)
\(\Rightarrow\left[{}\begin{matrix}m=5\\m=-15\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}m\ne0\\\Delta'=4\left(m-1\right)^2+8m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m^2+4=0\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn điều kiện đề bài
Để các pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}m\ne0\\\left(m-1\right)^2-2m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2-4m+1=0\end{matrix}\right.\) \(\Rightarrow m=2\pm\sqrt{3}\)
b/ \(\Delta=\left(m+1\right)^2-48=0\)
\(\Leftrightarrow\left(m+1\right)^2=48\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=4\sqrt{3}\\m+1=-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow m=-1\pm4\sqrt{3}\)
a,\(x^2-\left(m+1\right)x+m=0\)
xét \(\Delta=\left\{-\left(m+1\right)\right\}^2-4\cdot1\cdot m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)
vậy ...
b,\(x^2-2\left(m+1\right)x+2m+1=0\)
xét \(\Delta=\left\{-2\left(m+1\right)\right\}^2-4\cdot1\cdot\left(2m+1\right)=4m^2+8m+4-8m-4=4m^2\ge0\forall m\)
vậy ...
c, \(x^2+\left(m+3\right)x+m+1=0\)
xét \(\Delta=\left(m+3\right)^2-4\cdot1\cdot\left(m+1\right)=m^2+6m+9-4m-4=m^2-2m+5=m^2-2m+1+4=\left(m-1\right)^2+4>0\forall m\)vậy ...
d,\(x^2+3x+1-m^2=0\)
xét \(\Delta=3^2-4\cdot1\cdot\left(1-m^2\right)=9-4+4m^2=4m^2+5>0\forall m\)vậy ...
a: \(\Delta=m^2+20>0\)
=>Phương trình luôn có nghiệm
b: \(\Delta=m^2-4\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2>=0\)
nên phương trình luôn có nghiệm
c: \(\Delta=\left(m+2\right)^2-4\left(2m-5\right)\)
\(=m^2+4m+4-8m+20=m^2-4m+24\)
\(=\left(m-2\right)^2+20>0\)
=>Phương trình luôn có nghiệm