Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, chỉ có luôn ko dương thôi bạn ạ =)))
\(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)
\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)
Vậy biểu thức trên luôn âm với mọi x
b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)
Vậy biểu thức trên luôn âm với mọi x
luôn âm chứ bạn :)\
3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )
6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
bn kham khảo ở đây nha
Câu hỏi của Mimi - Toán lớp 8 | Học trực tuyến
vào thống kê hoie đáp của mình có chữ màu xanh trng câu hỏi này nhấn zô đó sẽ ra
hc tốt:~:B~
a) \(x^2-8x+2018=x^2-8x+16+2002=\left(x^2-8x+16\right)+2002=\left(x-4\right)^2+2002\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+2002\ge2002\)(Luôn Luôn Dương)
b)\(3x^2+6x+7=3x^2+6x+3+4=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\)
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)(Luôn Luôn Dương)
c)\(3x^2-6x+5=3x^2-6x+3+2=3\left(x^2-2x+1\right)+2=3\left(x-1\right)^2+2\)
Vì \(3\left(x-1\right)^2\ge0\)
\(\Rightarrow3\left(x-1\right)^2+2\ge2\)(Luôn Luôn Dương)
d)\(x^2-8x+19=x^2-8x+16+3=\left(x^2-8x+16\right)+3=\left(x-4\right)^2+3\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+3\ge3\)(Luôn Luôn Dương)
3x2-6x+5
= 3(x2-2x+\(\dfrac{5}{3}\))
=3(x2-2x+1+\(\dfrac{2}{3}\))
=3[(x-1)2+\(\dfrac{2}{3}\)] >0 (đpcm)
\(x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1\forall x\)
Mà 1>0
\(\Rightarrow x^2-6x+10\) luôn dương \(\forall x\left(đpcm\right)\)
A = 3 ( X^2 - 3/5 X + 1) = 3 ( X - 5/6 )^2 + 11/12 > 0 => đpcm
B = 4 (x^2 + 3/4 x + 1/2 ) = 4 (x+3/8)^2 + 23/16 > 0 => đpcm
Ta có : \(x^2-6x+10=\left(x^2-2.3.x+9\right)+1=\left(x-3\right)^2+1>0,\forall x\left(đpcm\right)\)
\(x^2-6x+10\\ =x^2-2x\times3+3^2+1\\ =\left(x-3\right)^2+1\)
có (x-3)2 \(\ge0\) nên \(\left(x-3\right)^2+1\ge1\)
vậy x2-6x+10 luôn dương với mọi x
B = x2 + 4x + 6
= (x2 + 4x + 4) + 2
= (x + 2)2 + 2 > 0
D = x2 + x + 1
= (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0
F = 2x2 + 4x + 3
= (2x2 + 4x + 2) + 1
= (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0
H = 4x2 + 4x + 2
= (4x2 + 4x + 1) + 1
= (2x + 1)2 + 1 > 0
K = 4x2 + 3x + 2
= (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
= (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0
L = 2x2 + 3x + 4
= (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
= (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0
Vậy các biểu thức trên luôn dương với mọi x
\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)
\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x
A=x2-6x+10
\(A=\left(x-3\right)^2+1>1\)
\(\Rightarrow A\) luôn dương
A = x2 - 6x + 10
= ( x2 - 6x + 9 ) + 1
= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 + x + 5
= ( x2 + x + 1/4 ) + 19/4
= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )
C = 4x2 + 4x + 2
= 4( x2 + x + 1/4 ) + 1
= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
D = ( x - 3 )( x - 5 ) + 4
= x2 - 8x + 15 + 4
= ( x2 - 8x + 16 ) + 3
= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
E = x2 - 2xy + 1 + y2
= ( x2 - 2xy + y2 ) + 1
= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
=3(x^2-2x+1)+2
=3(x-1)^2+2>0 với mọi x