Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)
=\(\dfrac{\left(x-y\right).z}{xyz}+\dfrac{\left(y-z\right).x}{xyz}+\dfrac{\left(z-x\right).y}{xyz}\)
=\(\dfrac{xz-yz}{xyz}+\dfrac{xy-xz}{xyz}+\dfrac{yz-xy}{xyz}\)
=\(\dfrac{xz-yz+xy-xz+yz-xy}{xyz}\)
=\(\dfrac{0}{xyz}\)=0
Vậy biểu thức trên ko phụ thuộc vào x,y,z
b,\(\dfrac{1}{\left(x-y\right).\left(y-z\right)}-\dfrac{1}{\left(x-z\right).\left(y-z\right)}-\dfrac{1}{\left(x-y\right).\left(x-z\right)}\)
=\(\dfrac{1.\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\dfrac{\left(x-y\right).1}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{1\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
=\(\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=\(\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=0
Vậy biểu thức trên ko phụ thuộc vào x,y,z
Bài 1:
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
\(\)Vậy bt trên ko phụ thuộc vào gt của biến
b) \(x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
Cái này thì mk ko chứng minh được vì nó còn thừa ra 3x á
Bài 2:
a) \(x\left(y-z\right)+y\left(z-x\right)+z\left(x-y\right)\)
\(=xy-xz+yz-xy+xz-yz\)
\(\left(xy-xy\right)-\left(xz-xz\right)+\left(yz-yz\right)\)
\(=0\left(đpcm\right)\)
b) \(x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)
\(=xy+xz-xyz-yz-xy+xyz+yz-xz\)
\(=\left(xy-xy\right)+\left(xz-xz\right)-\left(xyz-xyz\right)-\left(yz-yz\right)\)
\(=0\left(đpcm\right)\)
\(=\dfrac{x}{xy}-\dfrac{y}{xy}+\dfrac{y}{yz}-\dfrac{z}{yz}+\dfrac{z}{zx}-\dfrac{x}{zx}\)
\(=\dfrac{1}{y}-\dfrac{1}{x}+\dfrac{1}{z}-\dfrac{1}{y}+\dfrac{1}{x}-\dfrac{1}{z}\)
= 0
=> KO PHỤ THUỘC
* Chứng minh biểu thức sau phụ thuộc vào x , y , z
\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)
= \(\dfrac{(x-y)z+(y-z)x+(z-x)y}{xyz} \)
= \(\dfrac{xz-yz+xy-xz+zy-xy}{xyz}\)
= \(\dfrac{0}{xyz}\)
= 0
Vậy \(\dfrac{x-y}{xy} + \dfrac{y-z}{yz} + \dfrac{z-x}{zx} \) phụ thuộc vào x , y ,z
sửa đề câu a \(x\left(y-z\right)+y\left(z-x\right)+z\left(x-y\right)\)\(a\text{)}\: x\left(y-z\right)+y\left(z-x\right)+z\left(x-y\right)\\ =xy-xz+yz-xy+zx-zy=0\)
câu b tương tự.
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>
Ta có: \(\left\{{}\begin{matrix}x+y+z=0\\xy+yz+zx=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2xz=0\\2xy+2yz+2xz=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz=0\)
\(\Rightarrow x^2+y^2+z^2=0\Rightarrow\left\{{}\begin{matrix}x^2\ge0\forall x\\y^2\ge0\forall y\\z^2\ge0\forall z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\ge0\)
\("="\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
\(\Rightarrow x=y=z=0\Rightarrow dpcm\)
\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^z+z^2+0=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\Leftrightarrow x=y=z=0\)
b) Bằng chứ ^^
\(\left(x+y\right)^2=x^2+2xy+y^2=4xy\)
\(\Leftrightarrow x^2-2xy+y^2=0\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)