K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Ta lấy vế trái , chia thành 2 vế .

Vế 1 : tử = 1 ( giữa nguyên ) 

Vế 2 , mẫu = ..... ( ta sẽ chuyển từ mẫu này , như sau )

Áp dụng công thức tính dãy số , ta có ( khoảng cách : 1)

[(n - 1) : 1 + 1] . (n + 1) : 2 = n.(n + 1) : 2 

Bây giờ , chuyển lại vào phân số , ta có :

\(\frac{1}{1+2+3+.....+n}=\frac{1}{n.\left(n+1\right):2}=\frac{1}{1}:\frac{n\left(n+1\right)}{2}=\frac{1}{1}.\frac{2}{n\left(n+1\right)}=\frac{2}{n\left(n+1\right)}\)

Điều phải chứng minh 

16 tháng 5 2017

Ta có:

A=\(1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1\)

\(=2\left(1+2+3+...+\left(n-1\right)\right)+n\)

\(=2\left(\frac{\left(n-1\right)\cdot\left(n-1+1\right)}{2}\right)+n\)

\(=2\cdot\left(\frac{n\cdot\left(n-1\right)}{2}\right)+n\)

\(=n\left(n-1\right)+n=n\left(n-1+1\right)=n^2\)

Vậy \(\sqrt{A}=\sqrt{n^2}=n\)

Ta có :

A = 1 + 2 + 3 + ... + ( n - 1 ) + n + ( n - 1 ) + ... + 3 + 2 + 1

   = 2 ( 1 + 2 + 3 + ... + ( n - 1 ) + n

   = 2 ( n . ( n - 1 ) /2 ) + n

   = n ( n - 1 ) + n = n ( n - 1 + 1 ) = n2

Vậy \(\sqrt{A}=\sqrt{n^2}=n\)

15 tháng 1 2017

xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không 

S = 1/2 + 1/3 + 1/4 +...... + 1/ n 

=> 1/ S = 2 + 3 + 4 +......+n 

=> 1 = ( 2+3+4 +......+ n)S 

=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n) 

vì n thuộc n nên ( 2+3+4+...+ n)  sẽ là số nguyên 

=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên 

Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1 

có 2 Th để dấu bằng xảy ra là 

2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1 

Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n 

Th1 không thể xảy ra vì 2=3+4=...+n khác 1 

nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số

16 tháng 1 2017

Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh

18 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)(1)

Lại có : \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1}{a_2}.\frac{a_2}{a_3}....\frac{a_n}{a_{n+1}}=\frac{a_1}{a_{n+1}}\)(2)

Từ (1) và (2)

\(\RightarrowĐPCM\)

18 tháng 7 2018

27/12/2017 lúc 18:59

Ex1: Điền từ thích hợp vào chỗ trống

 This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30

Ex2:Cho dạng đúng của động từ trong ngoặc

1.My sister(have)...........classes from Monday to Friday

2.She(read)................a book in her room now

3.He(get)........................up at 6.00 every day?

4.There(not be)..............a big yard behind his classroom

Dúng KG

26 tháng 3 2019

Đặt: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.....\frac{2013}{2014}\) (1)

Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\)

Do đó nhân vế với vế, ta được: 

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\)

\(\Rightarrow A^2< \frac{1}{2015}\)

Mặt khác, \(A>\frac{1}{2}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\) (2)

Từ (1) và (2), ta được: 

\(A^2>\frac{1}{4}.\left(\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\right)\)

\(\Rightarrow A^2>\frac{1}{4}.\frac{3}{2015}\Rightarrow A^2>\frac{3}{8060}>\frac{1}{4028}\)

10 tháng 4 2020

Tí ăn xong giải tiếp

10 tháng 4 2020

Câu 3a này cái cuối là 1/2018.2020 mới đúng chứ

AH
Akai Haruma
Giáo viên
4 tháng 7 2020

Lời giải:

\(A=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}.....\frac{n+1-1}{n+1}=\frac{1.2.3....n}{2.3.4...n(n+1)}=\frac{1}{n+1}\)