K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Ta có:

A=\(1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1\)

\(=2\left(1+2+3+...+\left(n-1\right)\right)+n\)

\(=2\left(\frac{\left(n-1\right)\cdot\left(n-1+1\right)}{2}\right)+n\)

\(=2\cdot\left(\frac{n\cdot\left(n-1\right)}{2}\right)+n\)

\(=n\left(n-1\right)+n=n\left(n-1+1\right)=n^2\)

Vậy \(\sqrt{A}=\sqrt{n^2}=n\)

Ta có :

A = 1 + 2 + 3 + ... + ( n - 1 ) + n + ( n - 1 ) + ... + 3 + 2 + 1

   = 2 ( 1 + 2 + 3 + ... + ( n - 1 ) + n

   = 2 ( n . ( n - 1 ) /2 ) + n

   = n ( n - 1 ) + n = n ( n - 1 + 1 ) = n2

Vậy \(\sqrt{A}=\sqrt{n^2}=n\)

26 tháng 10 2016

Ta lấy vế trái , chia thành 2 vế .

Vế 1 : tử = 1 ( giữa nguyên ) 

Vế 2 , mẫu = ..... ( ta sẽ chuyển từ mẫu này , như sau )

Áp dụng công thức tính dãy số , ta có ( khoảng cách : 1)

[(n - 1) : 1 + 1] . (n + 1) : 2 = n.(n + 1) : 2 

Bây giờ , chuyển lại vào phân số , ta có :

\(\frac{1}{1+2+3+.....+n}=\frac{1}{n.\left(n+1\right):2}=\frac{1}{1}:\frac{n\left(n+1\right)}{2}=\frac{1}{1}.\frac{2}{n\left(n+1\right)}=\frac{2}{n\left(n+1\right)}\)

Điều phải chứng minh 

19 tháng 2 2016

Thiếu  điều  kiên n E N

19 tháng 2 2016

\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)

\(=\sqrt{2\left[1+2+3+..+\left(n-1\right)+n\right]}=\sqrt{2\frac{n\left(n-1\right)}{2}+n}\)

\(=\sqrt{n\left(n-1\right)+n}=\sqrt{n^2-n+n}=\sqrt{n^2}=n\left(đpcm\right)\)

25 tháng 11 2017

\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\\ =\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\\ =\sqrt{2.\left(n+1\right).n:2-n}\\ =\sqrt{n\left(n+1\right)-n}\\ =\sqrt{n^2+n-n}\\ =\sqrt{n^2}\\ =n\)

28 tháng 2 2017

Ta có:1+2+3+..+(n-1)

=>số số hạng của tổng trên là:\(\frac{\left(n-1\right)-1}{1}\) +1=n-2+1=n-1

vậy:1+2+3+..+(n-1)=[(n-1)+1].(n-1):2=n(n-1):2

=>\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+..+3+2+1}\)

\(\sqrt{n\left(n-1\right):2.2+n}\)

\(\sqrt{n\left(n-1\right)+n}\)

\(\sqrt{n.n-n+n}\)

\(\sqrt{\sqrt{n}}\)=n

vậy\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+..+3+2+1}\)

=n(dpcm)

28 tháng 2 2017

Khó quá à =.= bucminh